
ibm.com/redbooks

Grid Services
Programming and
Application Enablement

Luis Ferreira
Arun Thakore

Michael Brown
Fabiano Lucchese

Huang RuoBo
Linda Lin

Paul Manesco
Jeff Mausolf Nasser Momtaheni

Karthik Subbian Olegario Hernandez

Grid services programming

Samples using Globus
Toolkit V3.0

Implementation based on
OGSI V1.0

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Grid Services Programming and Application
Enablement

May 2004

International Technical Support Organization

SG24-6100-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2004)

This edition applies to version 3.0.2 of the Globus Toolkit and the OGSI 1.0 - Open Grid Services
Infrastructure.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xii
Become a published author . xviii
Comments welcome. xviii

Chapter 1. Introduction . 1
1.1 Why grid computing?. 2
1.2 Benefits of grid computing. 2
1.3 Use of standards . 3

Chapter 2. Service Oriented Architecture . 5
2.1 What is SOA? . 6
2.2 The basic components of SOA . 6
2.3 Web services as an implementation of the SOA . 8

2.3.1 Web Service Description Language (WSDL) 9
2.3.2 Simple Object Access Protocol (SOAP) . 16
2.3.3 Universal Description, Discovery, and Integration (UDDI) 19

Chapter 3. Open Grid Services Architecture . 21
3.1 Introduction . 22
3.2 OGSA mechanisms. 24

3.2.1 Interoperability. 24
3.2.2 Discovery and access of resources . 24
3.2.3 Independent upgradability . 25
3.2.4 Transient life cycle management of resources 25
3.2.5 Services state - grid service handle and reference 26
3.2.6 Factory . 26
3.2.7 Dynamic resolution of transient references from permanent handles27
3.2.8 Service data element and registry interface 27
3.2.9 Asynchronous notification of state changes 28

3.3 Open Grid Services Infrastructure (OGSI) . 28
3.3.1 OGSI interfaces and their operations . 29

Chapter 4. Grid services development . 37
4.1 Introduction . 38

4.1.1 Development machine . 38
© Copyright IBM Corp. 2004. All rights reserved. iii

4.1.2 Server machine . 39
4.1.3 Client machine . 40

4.2 Grid development basic method . 41
4.2.1 Specifying . 42
4.2.2 Coding. 42
4.2.3 Building . 44
4.2.4 Packaging . 45
4.2.5 Deploying and undeploying. 46
4.2.6 Testing . 47

4.3 Grid services development sample . 49
4.3.1 Essentials . 49
4.3.2 Specifying: defining the service’s functionality 49
4.3.3 Coding sample . 50
4.3.4 Building the sample: service implementation 52
4.3.5 Packaging the sample. 53
4.3.6 Deploying the sample . 53
4.3.7 Testing sample . 55

Chapter 5. Major features of grid services . 59
5.1 Introduction . 60
5.2 Factory . 60
5.3 Service Data Elements . 61
5.4 Life cycle . 64
5.5 Notifications. 67

Chapter 6. Project and design of grid applications 73
6.1 Use existing code or build from scratch? . 74

6.1.1 Developing a grid application from scratch . 74
6.1.2 Grid enabling existing code. 74

6.2 Qualify the application . 75
6.3 Understand the requirements . 76

6.3.1 Functional requirements . 77
6.3.2 Non-functional requirements . 78

6.4 Develop a high-level design . 92
6.4.1 Define interfaces . 93
6.4.2 Define method parameters and return types. 93
6.4.3 Define service data and notification strategy 93
6.4.4 Define the life cycle . 94
6.4.5 Define security . 95
6.4.6 Run the scenarios to ensure that the requirements are satisfied . . . 95

6.5 Develop a detailed design . 96
6.5.1 Application flow in a grid . 96
6.5.2 Job criteria. 101
iv Grid Services Programming and Application Enablement

6.5.3 Programming language considerations. 103
6.5.4 Job dependencies on the system environment 104
6.5.5 Checkpoint and restart capability . 106
6.5.6 Job topology . 106
6.5.7 Passing of data input/output . 107
6.5.8 Transactions . 108
6.5.9 Data criteria. 108
6.5.10 Usability criteria . 109
6.5.11 Installation . 110
6.5.12 Unobtrusive criteria . 110
6.5.13 Informative and predictable aspects . 110
6.5.14 Resilience and reliability . 111

6.6 Implement the design . 111
6.6.1 Write the interface . 112
6.6.2 Write the implementation . 112
6.6.3 Write the non-Java parts . 112
6.6.4 Write the clients. 113

Chapter 7. Case study: grid application enablement. 115
7.1 Introduction . 116
7.2 Case study: design . 116

7.2.1 Functional requirements . 116
7.2.2 Non-functional requirements . 122
7.2.3 Architecture overview . 122

7.3 Case study: grid service specifying and coding 125
7.4 Phase I: building the core News Service. 126

7.4.1 Development of server-side functionality . 127
7.4.2 Administration client implementation. 132
7.4.3 Subscriber client implementation . 135

7.5 Phase II: operationalizing the News Service with news writer and subscriber
notification of news . 137

7.5.1 Enhancing server-side functionality . 138
7.5.2 Writer client implementation . 147
7.5.3 Enhancing the subscriber client implementation. 150

7.6 Phase III: incorporating workflow and approval by editor 154
7.6.1 Enhancing the server side functionality. 156
7.6.2 Modifying the writer client . 163
7.6.3 Implementing the editor client . 164

7.7 Phase IV: making the News Service robust . 172

Chapter 8. IBM Grid Toolbox basics . 177
8.1 Introduction . 178

8.1.1 Goals. 178
 Contents v

8.1.2 Services . 179
8.2 Tooling. 180

8.2.1 Coding and building . 180
8.2.2 Deployment . 181
8.2.3 Testing . 181

8.3 Case study . 183
8.3.1 Case study - phase I . 184
8.3.2 Case study - phase II . 186
8.3.3 Case study - phase III . 188
8.3.4 Case study - phase IV. 188

Appendix A. Sample code . 191
Server-side code . 192
Client-side code . 202

Appendix B. Web service development . 213
Introduction. 214

Development tools . 214
Web services development basic steps illustrated 215

Specifying. 216
Coding . 216

Generating WSDL from a Java interface . 216
Building. 220

Generating Java code from a WSDL file . 221
Implementing the server side code . 223
Implementing the client side code. 225

Deploying and testing the Web service . 226

Appendix C. Java2WSDL and WSDL2Java . 231
Java2WSDL . 232
WSDL2Java . 234

Appendix D. Tasks using ant . 237
axis-wsdl2java . 238
axis-java2wsdl . 239
axis-admin . 241

Appendix E. Delegation . 243
Delegation and operational providers. 244

Appendix F. Service Browser . 253
Introduction. 254
Basic operations. 254
Advanced operations . 259
vi Grid Services Programming and Application Enablement

Security monitoring and testing. 259
Service query . 259

Appendix G. WSRF . 261
Introduction. 262
WS-Resource Framework . 263

WS-Resource Framework: some definitions. 264

Related publications . 267
IBM Redbooks . 267
Other publications . 267
Online resources . 268
How to get IBM Redbooks . 270
Help from IBM . 271

Index . 273
 Contents vii

viii Grid Services Programming and Application Enablement

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
ibm.com®
pSeries®
xSeries®
zSeries®

AD/Cycle®
AIX 5L™
AIX®
BookMaster®
Cloudscape™
CICS®
IBM®
LoadLeveler®

MQSeries®
OS/2®
Redbooks™
Summit®
SystemView®
Tivoli®
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Rational Software
Corporation, in the United States, other countries or both:

Rational Rose® Rational®

The following terms are trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
x Grid Services Programming and Application Enablement

Preface

This IBM® IRedbook is the fourth in a planned series of Redbooks™ publications
addressing grid computing. In the first publication, Introduction to Grid
Computing with Globus, SG24-6895, grid concepts and the Globus Toolkit were
introduced. The second publication, Enabling Applications for Grid Computing
with Globus, SG24-6936, introduced the concept of enabling applications to run
on the open source Globus Toolkit 2.0. The third, Globus Toolkit 3.0 Quick Start,
REDP3697, provides the critical jump start for someone who wants to learn
about Globus Toolkit 3.0 but has little or no experience with prior Globus releases
or grid computing in general.

The goal of this redbook is to familiarize the user with the concepts of the OGSA
(Open Grid Services Architecture), OGSI (Open Grid Services Infrastructure),
Globus Toolkit 3.0, presenting concrete programmatic examples, and also
introducing the enhanced features of the IBM Grid Toolbox. We illustrate the
various steps needed to develop a grid service application. Existing applications
can be wrappered and made available as grid services or applications can be
developed from scratch to take advantage of the grid service concepts and
provide the benefits made possible by the grid service.

The redbook is organized into eight chapters:

� Chapter 1, “Introduction” on page 1

This chapter summarizes the motivations and benefits of developing IT
business solutions using grid computing technology and presents an
overview of the main standards and organizations.

� Chapter 2, “Service Oriented Architecture” on page 5

This chapter introduces the Service Oriented Architecture (SOA) as a
technology to enable grid services, primarily making use of Web services.

� Chapter 3, “Open Grid Services Architecture” on page 21

This chapter introduces the fundamentals of grid services and the challenges
that they impose. Theses concepts, plus a general grid framework, form the
Open Grid Services Architecture (OGSA), which uses Web Services as the
main technology to enable grid services.

� Chapter 4, “Grid services development” on page 37

This chapter describes a simplified method that embraces the complete
development cycle of a grid service, providing straightforward guidelines on
how to code, build and deploy a grid service in an arbitrary hosting
environment.
© Copyright IBM Corp. 2004. All rights reserved. xi

� Chapter 5, “Major features of grid services” on page 59

This chapter introduces the OGSI and GT3 features of grid services and show
how these grid service features address the shortcomings of the Web
Services model.

� Chapter 6, “Project and design of grid applications” on page 73

This chapter provides an overview of the issues to consider for any grid
application. The approach to building a grid-enabled application
encompasses a wide range of aspects of problem analysis, application
architecture, and design.

� Chapter 7, “Case study: grid application enablement” on page 115

This chapter presents a case study which aims to apply the main concepts of
grid service application design, specifying and coding over a real, practical
grid application. The study project is an application of a bulletin service, as
could be implemented by a news organization’s Web site.

� Chapter 8, “IBM Grid Toolbox basics” on page 177

This chapter introduces the IBM Grid Toolbox V3 for Multiplatforms V1.1, the
IBM implementation of the OGSI 1.0 specification.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Luis Ferreira, also known as “Luix”, is a Senior Software Engineer at IBM
Corporation - International Technical Support Organization, Austin Center,
working on Linux and grid computing projects. He has 20 years of experience
with UNIX®-like operating systems in design, architecture and implementation,
and holds an M.S. degree in Systems Engineering from Universidade Federal do
Rio de Janeiro in Brazil. Before joining the ITSO, Luis worked at Tivoli® Systems
as a Certified Tivoli Consultant, at IBM Brasil as a Certified IT Specialist, and at
Cobra Computadores as a kernel developer and operating systems designer.

Arun Thakore is a Certified Consulting I/T Architect at IBM, presently working at
the AIS division, Architecture and Technology Center of Excellence Practice. He
is also a member of the IBM Architect Certification Board. He has led
engagements in grid and various e-business architectures in B2C and B2B
areas. He has worked on the development of the reference architecture for the
enablement of participants in an e-marketplace and on the reference architecture
for e-business applications. He has also worked on the the course “Development
of Operational Architecture Model” that is offered via distance learning. He has
technically assisted in the pre-sales activities as well. Prior to his current
xii Grid Services Programming and Application Enablement

assignment, he worked as a lead Architect at the Distributed Reservation
Systems department of the Travel and Transportation Solution unit at the BIS
division. He has been involved in the architecting of distributed reservation
systems for different customers. He has developed architectures for enabling the
reservation system functionality to be accessed via a Web-based environment.
He has provided technical guidance and leadership to the development team at
the Travel and Transportation Solution Unit. In the past, he worked as an
architect at the IBM Manufacturing Solution Unit, architecting various aspects of
the solution for a manufacturing plant. He has also designed and led
development teams in the development of distributed object servers. Arun has
designed applications for small hand-held devices, developed architectures for
integrating data from heterogeneous data sources in a medical environment, and
developed application and data architectures for data assimilation applications
for oceanic/atmospheric studies. He has experience in performance analysis and
development of system management monitors and operational tasks. He has
also trained software engineers in object-oriented software development
methodology, relational database design and implementation, operating system
concepts, and the design of applications using object-oriented databases. He
holds a PhD with majors in Computer Science and Engineering and has
published in various reputed journals and conferences in the field of information
technology.

Michael Brown is a Senior Programmer and Sun-certified J2EE architect
working in the IBM Linux Integration Center in Austin, Texas, where he is the
leader of the team working on projects in the Americas. He has more than 25
years of experience as an application developer and enterprise architect on
multiple platforms and operating systems, including UNIX, Linux, AIX®, and
OS/2®. Michael holds B.S. (Honours) and M.S. degrees in Computer Science
from the University of Western Ontario in London, Ontario, Canada. He worked
on the previous GT3 Redpaper and presented GT3 programming sessions at the
Colorado Software Summit®.

Fabiano Lucchese is currently the project manager of the grid computing team
of Progonos Consulting. In 1994, Fabiano was admitted to the Computer
Engineering undergraduate course of the State University of Campinas, Brazil
and in mid-1997, he moved to France to finish his undergraduate studies at the
Central School of Lyon. Also in France, he pursued graduate-level studies in
Industrial Automation and, back in Brazil, joined Unisoma Mathematics for
Productivity, where he worked as a software engineer on the development of
image processing and optimization systems. From 2000 to 2002, he majored in
Computer Engineering to achieve an M.S. from the State University of Campinas
where he developed a task scheduling algorithm for balancing processing loads
on heterogeneous grids.
 Preface xiii

Huang RuoBo is a staff software engineer in IBM China Software Development
Lab, working with grid computing, grid services, Web services, and J2EE. He has
more than three years of experience in Java™ development and is currently
working in grid computing support and development in China.

Linda Lin is an advisory IT specialist in grid computing, IBM Server Group,
located in China, working within Technical Sales Support. She has been with IBM
for five years. She holds an M.S. in Computer Science from Beijing University of
Aeronautics and Astronautics, China. Before joining the grid computing team,
she worked in the IBM China Research Lab focused on Pervasive Computing
and Wireless.

Paul Manesco is an IT specialist working in the Grid Design Center for
eBusiness on Demand, IBM Server Group, located in Montpellier, France. He
has been with IBM for five years and has been involved with grid computing
since 2002, working on projects around the Globus Toolkit. He holds an M.S. in
Computer Science from Universite de Montpellier, France. His areas of expertise
include the Linux operation system, grid technologies and performance
benchmarking on IBM xSeries® platforms.

Jeff Mausolf is a certified IT Architect in the IGS e-Technology Center in Austin,
Texas. Jeff's current focus is on the grid computing initiative, where he is a
member of an elite team working to integrate the grid with IBM's on-demand
vision. Prior to joining the grid "brain-trust,” Jeff worked as an application
architect and software engineer on e-business engagements, where he
developed portals for many state governments and agencies. He holds an M.S.
in Computer Science and has been with IBM for twelve years. Before coming to
IBM, Jeff was in the AeroSpace industry and held positions with Lockheed, Loral,
and Ford AeroSpace, supporting contracts with the NASA at the Johnson Space
Center in Houston, Texas. While at the Johnson Space Center, Jeff supported
mission training for astronauts in the Shuttle Engineering Simulation (SES)
laboratory,; he also helped to build Space Station and Mission Control training
facilities, worked on the AP101S General Purpose Computer (GPC) for the
Space Shuttle, and developed prototype Data Management Systems for the
Space Station.

Karthik Subbian is a software engineer working for IBM Global Services, India.
His primary expertise is application design, re-engineering and development for
Telecom Business under UNIX platforms. He also has prior experience in
assisting clients in managing their applications and migrating them to IBM
platforms. His areas of interests in the software arena include grid computing,
XML, SOAP and Web services. He holds a bachelor's degree in Electronics and
Communication Engineering from Pondicherry Engineering College, India.

Nasser Momtaheni is a Senior Technology Consultant and a Certified IT
Specialist, working in the IBM Solution Partnership Center in San Mateo,
xiv Grid Services Programming and Application Enablement

California. He has been with IBM since 1991. Currently, as a member of the SPC
grid team, he is responsible for grid application enablement on the Solutions Grid
for Business Partners, equipped with both open and proprietary grid tools and
solutions. He has over twenty years of experience in application development in
distributed environments on multiple UNIX, AIX, and Linux platforms. In 2000, he
joined the San Mateo Solution Partnership Center as a technical lead for the
project Monterey, and led ISV efforts in enabling applications for AIX 5L™ on
Itanium processors. He then led Linux application enablements on IBM hardware
and software platforms for Independent Software vendors at the World Wide
SPCs. He holds a BS degree in Business Management and Accounting, an M.S.
degree in Mathematics, and an MS degree in Computer Sciences from the
University of North Texas.

Olegario Hernandez is a former IBM Advisory Systems Engineer with 30 years
of experience with IBM. He graduated as a Chemical Civil Engineer from the
Universidad de Chile. During his time at IBM, he worked in application
development, disciplines of systems management, IS Architecture, CICS®
Application Interface, and business systems planning methodology (BSP). He
has been assigned to residencies at different centers of the IBM International
Technical Support Organization: ITSC Boeblingen for CICS Application Interface,
ISC Gaithersburg for AD/Cycle®, and ITSC Poughkeepsie for Systems
Management and SystemView®. After his retirement from IBM, he was a
resident in ITSO Austin for the projects Architecting Secure Systems with Tivoli
products and Introduction to Grid Computing with Globus as an IT Systems
Consultant for IBM Business Partners.
 Preface xv

Figure 1 The team that wrote this redbook (left to right): Michael, Paul, Arun, Luis, Jeff.
On the bottom, left to right, are Nasser, Huang , Fabiano, Linda

Acknowledgements
Thanks to the following people for their contributions to this project:

Joanne Luedtke, Bart Jacob, Lupe Brown, Arzu Gucer, Wade Wallace, Chris
Blatchley
International Technical Support Organization, Austin Center, USA

Cecilia Bardy
International Technical Support Organization, Raleigh Center, USA

John Adams
Grid Computing Initiative, e-Technology Center, IBM Austin, USA

Paul Magnone,
IGS EBO Business Development, IBM Somers, USA

Al Hamid
Architecture & Technology Center of Excellence, IBM Global Services, USA
xvi Grid Services Programming and Application Enablement

John Caldwell
Enterprise Architecture & Technology, IBM Global Services, USA

Atul Kumar, Frank Paxhia, Mike Harris
Advanced Systems Infrastructure Development, IBM Poughkeepsie, USA

Ruth Harada and Flavio Carazato
Software Group, IBM Brazil

David A. Kra
Grid Computing Business Unit, IBM USA

Stephen Chu
Executive, Lead team, ISG, GCG, IBM China

Zhu QingJiu
China Software Development Lab, IBM China, USA

Globus Alliance team
Argonne National Laboratory, USA

Borja Sotomayor
BorjaNet and Universidad de Deusto, Spain

Eduardo J. Huerta
Progonos Consulting, Brazil

Joao Meidanis, Marco Aurelio Amaral Henriques
Unicamp - Universidade Estadual de Campinas, Brazil

Rogerio Luiz Iope, Luis Gustavo Gasparini Kiatake
USP - Universidade de São Paulo, Brazil

Special thanks to the following people:

The IBM’s Grid Computing team in Somers, in particular to Tony White.
 Preface xvii

Become a published author
Join us for a two- to six-week residency program! Help write an IBM redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xviii Grid Services Programming and Application Enablement

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

This chapter summarizes the motivations and benefits of developing IT business
solutions using grid computing technology, and presents an overview of the main
standards and organizations.

1

© Copyright IBM Corp. 2004. All rights reserved. 1

1.1 Why grid computing?
Businesses are constantly faced with pressure to reduce the time to market of
their product and services. In order to stay competitive, they are faced with the
challenge of determining the right customer set and targeting their marketing
activities to that customer set. Businesses increasingly have to work
collaboratively with a variety of partners, suppliers, and various parts of their own
organization in order to produce and supply products and services. These
collaborations are getting complex and business needs demand shorter cycle
times for these collaborative business processes.

The IT landscape of the various partners, suppliers, and other entities that a
business deals with is characterized by application sets which use different and
heterogeneous hardware platforms and operating environments, and are written
using different programming models and languages. Businesses typically have
silos of heterogeneous hardware and software resources within different parts of
their own organization. Further, in order to achieve reliability, fault tolerance, and
availability within the silos, the systems are designed for peak demand and are
under-utilized most of the time. The time and accuracy of the various computing-
and data-intensive tasks are limited by the availability of the resources within the
silos.

1.2 Benefits of grid computing
Businesses can have a great advantage in meeting their challenges if they
execute applications on a computer grid environment. Grid computing is an
evolutionary step in distributed computing. Grid computing allows a pool of
heterogeneous resources both within and outside of an organization to be
virtualized and form a large, virtual computer. This virtual computer can be used
by a collection of users and/or organizations in collaboration to solve their
problems. The rules governing the participants providing the resources and the
consumers using the resources, as well as the conditions for sharing, dictate the
nature of the virtual organization of users of this virtual computer.

This use of a virtual computer formed from a grid of shared resources allows the
users of the virtual organizations to solve complex collaborative problems. The
sharing enabled by grid computing goes far beyond sharing through the
exchange of data and permits the direct use of computing, data, and network
resources. This enhanced sharing allows users and organizations to improve
performance, reduce cycle time, increase availability, and improve fault tolerance
by distributing both computing- and data-intensive workloads across several
resources forming the grid. Grid computing also enables the effective and
efficient integration of applications that are on different and heterogeneous
2 Grid Services Programming and Application Enablement

hardware platforms, operating environments, and written using different
programming models and languages, to implement collaborative business
processes. Further, the sharing of the resources from the individual silos in
forming the bigger pool allows the under-utilized and available resources to be
discovered and used by applications and jobs that have a greater need. This not
only improves the utilization of underused resources, but also improves the
performance and availability of resource-intensive jobs and applications.

1.3 Use of standards
The vision of grid computing can be implemented by the use of open standards
with common interfaces and protocols for defining, discovering and using the
heterogeneous set of resources.

GGF and Globus alliance
The Global Grid Forum (GGF) is an organization that has undertaken the
mission of creating and documenting the technical specifications and
implementation guidelines that promote and support the development,
deployment, and implementation of grid technologies and applications.
Specifically, GGF has published a standard Open Grid Services Architecture
(OGSA), and an Open Grid Services Infrastructure (OGSI 1.0) based on OGSA.

A reference implementation of OGSA called Globus Toolkit 3.0 (GT3), developed
by Globus Alliance (http://www.globus.org/), has also been made available to
assist the grid computing community. The grid framework published at GGF is
itself based on the Service Oriented Architecture (SOA), the Web services, and
Internet standards from the World Wide Web Consortium (W3C). IBM is an active
participant of the GGF and has contributed to the development of the standards.
In addition, IBM has developed a version of the grid toolkit, called the IBM Grid
Toolbox V3 for Multiplatforms V1.1, which follows the OGSA architecture and the
OGSI specification. IBM Grid Toolbox enhances the features provided by GT3
and also makes it easier for the applications to be deployed in industrial strength
application server environments.

Web Services Resource Framework: the new specification
The GGF's OGSI- Working Group issued a new draft proposal WS-Resource
Framework (WSRF) as an OGSI 1.0 evolution in January 2004. Syntax and
terminology have changed, and the specification was broken up into separate
specifications, each focusing on a particular area. The document From Open
Grid Services Infrastructure to WS-Resource Framework: Refactoring &
Evolution Version 1.0 version 1.0, from 2/12/2004 introduces the following
normative WSRF specifications. More information about WSRF can be found in
Appendix G, “WSRF” on page 261.
 Chapter 1. Introduction 3

http://www.globus.org/

Important: All examples of this document are based on the OGSI 1.0
specification.
4 Grid Services Programming and Application Enablement

Chapter 2. Service Oriented
Architecture

This chapter introduces the Service Oriented Architecture (SOA) as a technology
to enable grid services, primarily making use of Web services.

In order to make this possible, complementary specifications to Web services are
presented, including: Web Services Description Language (WSDL) for describing
the content and usage of the Web services; the Simple Object Access Protocol
standard (SOAP) as a protocol for exchanging messages between Web
services; and the Universal Description, Discovery and Integration (UDDI)
specification for allowing services publication and discovery.

The basics concepts and their main elements are presented, each followed by
practical examples.

2

© Copyright IBM Corp. 2004. All rights reserved. 5

2.1 What is SOA?
The Service Oriented Architecture (SOA) is an architectural approach whereby
an application is composed of independent, distributed and co-operating
components called services. This collection of services constitutes the
application. The services can be distributed within or outside of the
organizational physical boundaries and security domains. Furthermore, the
various service components can exist on varying platforms and can be
implemented using different programming languages.

The key concept of SOA is that the functionality implemented by a service is
exposed via a standard-based interface declaration. The implementation details
are hidden from the users of the service; they invoke the service based on the
operations exposed in these interfaces. One interesting way of implementing the
SOA to take advantage of Web services, which can be used in the process of
service definition, discovery and execution, will be discussed in the next
sub-sections.

Furthermore, with the aid of other services such as resource schedulers, index
services and discovery, the applications can be dynamically configured to take
advantage of similar functions available for varied sources to deliver their
functionality. This results in improved and predictable service levels and
optimized utilization of resources.

2.2 The basic components of SOA
The SOA’s basic components are elements and the operations messages they
exchange with each other.

There are three key elements: Service Provider, Service Requestor and Service
Registry, as shown in Figure 2-1 on page 7.

Service Provider The Service Provider is responsible for building a useful
service, creating a service description for it, publishing
that service description to one or more service registries,
and receiving service invocation messages from one or
more Service Requestors.

Service Requestor The Service Requestor is responsible for finding a service
description published to one or more Service Registries,
such as yellow pages for services, and for using service
descriptions to bind to or invoke services hosted by
Service Providers. Any consumer of a service can be
considered a Service Requestor.
6 Grid Services Programming and Application Enablement

Service Registry The Service Registry is responsible for advertising service
descriptions published to it by the Service Providers, and
for allowing Service Requestors to search the collection of
service descriptions contained within the Service Registry.
Once the Service Registry provides a match between the
Service Requestor and the Service Provider, the Service
Registry is no longer needed for the interaction.

An application component can play any of the above roles. Note also that an
application component can play more than one role. For example, an application
component that performs Order Processing can be implemented as a Service
Provider and will allow client modules to invoke this service, taking order input
from the users. In this case, the client module plays the role of the Service
Requestor. However, the Order Processing service can also invoke the services
offered by a Credit Authorization service before accepting and processing the
orders. Therefore, the Order Processing service plays the role of both Service
Provider and Service Requestor.

Figure 2-1 Elements of the Service Oriented Architecture (SOA)

Operations are defined by contracts between the above elements. There are
also three: Publish, Find and Bind, as shown in Figure 2-1.

Publish The Publish operation is a contract between the Service
Provider and the Service Registry. The Service Provider
registers the services interfaces it provides at the Service

Service Registry

Service Requestor Service Provider

Fin
d

Bind

Publish
 Chapter 2. Service Oriented Architecture 7

Registry using the Publish operation. Once published, the
services provided by the Service Provider are available
for any Service Requestor to use.

Find The Find operation is a contract between the Service
Requestor and Service Registry. The Service Requestor
uses the Find operation to get a list of the Service
Providers that satisfies its needs. It may indicate one or
more search criteria, such as the desired availability and
performance, in the Find operation. The Service Registry
searches through all the registered Service Providers and
returns the appropriate information.

Bind The Bind operation is a contract between the Service
Requestor and the Service Provider. It allows the Service
Requestor to connect to the Service Provider before
invoking the operations. It also enables the Service
Requestor to generate the client-side proxy for the service
provided by the Service Provider. The binding can be
dynamic or static: in the first case, the Service Requestor
generates the client-side proxy based on the service
description obtained from the Service Registry at the time
the service is invoked; the other case involves the Service
Requestor generating the client-side proxy during
application development.

2.3 Web services as an implementation of the SOA
Web services are an emerging technology widely used for implementing the
SOA. They employ a program-to-program communication model built on existing
Internet standard eXtensible Markup Language (XML) for the specification of
data in a platform, language, hardware delivery device, and software vendor
neutral manner. Web services do not specify a particular protocol for
communication, thus any communication layer protocol, such as HTTP or JMS,
can be used in the message exchange process.

For the purposes of grid services, Web services utilize the Web Services
Description Language (WSDL) to describe content and usage, the emerging
standards of SOAP as a protocol for sending exchange messages between Web
services, and the Universal Description, Discovery and Integration (UDDI)
specification to allow Web providers to register their services and Web
requestors to locate the appropriate services providers.

Additional standards for defining and implementing quality of service for Web
services are being defined in the WS-Security, WS-Reliable Messaging,
8 Grid Services Programming and Application Enablement

WS-Coordination, and WS-Transaction families of specifications. Similarly,
standards for utilizing Web services in the implementation of collaborative
business processes are being defined in the WS-Business Process Execution
Layer specification. Refer to Web Services Conceptual Architecture, May 2001,
by Heather Kreger - IBM Software Group, at:

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

2.3.1 Web Service Description Language (WSDL)
Web Service Description Language (WSDL) is an XML-based standard from the
World Wide Web Consortium (W3C) for describing the interface and usage
bindings for Web services. Since it is XML-based, it is independent of
programming languages and development environments.

It is used by Service Providers to describe the particularities of the services
which are published, through UDDI specification, in the service registries. Thus,
Service Requestors are able to search for the proper Service Provider and
invoke the desired service based on the information expressed in WSDL.

A WSDL document contains three categories of information about the Web
service: Service Interface, Service Bindings, and Service Implementation. The
Service Interface defines the structure of the data communicated and the
signature of the operations provided by the service in a language, platform, and
communication protocol independent fashion. The service binding specifies the
transport protocols to be used and the encoding rules to be followed when
accessing the public operations provided by the service. The Service
Implementation specifies the details of the implementation for all operations of
the service.

In the next few sections, each of these categories is explored with references to
appropriate examples.

Service Interface
The key elements of the Service Interface are Types, Message, Operation and
Port Type, discussed here with the example provided in Figure 2-2 on page 10.

Types The data type definitions used by the messages
exchanged between the Service Requestor and the
Service Provider are specified in the Types section. In the
example, there is one complex type named
Arrayof_xsd_string which describes an array of strings.
As shown in the next paragraph, this type will be used in
the description of the messages.
 Chapter 2. Service Oriented Architecture 9

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

Figure 2-2 Service Interface definition part of an example Web service definition

Messages A message represents a single interaction between the
Service Requestor and Service Provider. If an operation is
a Remote Procedure Call (RPC) that requests a return
value, then the interaction is bi-directional and has to be
defined using two messages. In the example, two

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://DefaultNamespace"
 xmlns:impl=http://DefaultNamespace
 xmlns:intf="http://DefaultNamespace"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://DefaultNamespace">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="ArrayOf_xsd_string">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </wsdl:types>

 <wsdl:message name="getMOTDResponse">
 <wsdl:part name="getMOTDReturn" type="xsd:string"/>
 </wsdl:message>

 <wsdl:message name="getMOTDRequest">
 <wsdl:part name="in0" type="impl:ArrayOf_xsd_string"/>
 </wsdl:message>

 <wsdl:portType name="MOTD1">
 <wsdl:operation name="getMOTD" parameterOrder="in0">
 <wsdl:input name="getMOTDRequest" message="impl:getMOTDRequest"/>
 <wsdl:output name="getMOTDResponse" message="impl:getMOTDResponse"/>
 </wsdl:operation>
 </wsdl:portType>
10 Grid Services Programming and Application Enablement

messages are defined: getMOTDRequest and
getMOTDResponse. The getMOTDRequest message is
sent from the Service Requestor to the Service Provider.
The Service Provider responds by sending the
getMOTDResponse message to the Service Requestor. A
message can have one or more typed parts. In the
example, the getMOTDRequest consists of one part of
type Arrayof_xsd_string defined earlier in the WSDL.
Similarly, the getMOTDResponse consists of one part of
type string. These messages will be used in the definition
of operations supported by the Web service, as shown in
the next paragraphs.

Operation An operation is a description of an action supported by
the Web service. Operations can be of any of the four
types of Message Exchange Patterns (MEP): One-way,
Request-response, Solicit-response and Notification.
Table 2-1 provides the order of message communication
and the description of the MEPs. Using a One-way
operation, the Service Requestor is only allowed to send
a one-way input message to trigger the operation without
receiving any immediate response from the Service
Provider. In Request-response, the Service Provider
responds with the result of the operation in the form of a
response output message upon receiving an input trigger
message. Solicit-response is used if the Service Provider
solicits a response from the Service Requestor by
sending a message, and the Service Requestor responds
with a response. Using Notification, the Service Provider
sends a one-way notification message to the Service
Requestor. In the example, the getMOTD operation is a
Request-response. The getMOTDRequest message is
the input of the operation and the getMOTDResponse is
the output response of the operation.

Table 2-1 Message Exchange Patterns (MEP) used by the operation

MEP Order Description

One-way Input element The endpoint receives a
message

Request-response Input element
Output element

The endpoint receives a
message and sends a
correlated message
 Chapter 2. Service Oriented Architecture 11

Port type A port type (or PortType) is a collection of operations that
are supported by the Web service. Port types are similar
to interfaces in Java. In the example, there is one port
type, namely MOTD1. It consists of one operation called
getMOTD.

Bindings
The binding specifies the details about the use of the transport protocol for the
transmission between the Service Requestor and the Service Provider for a
given port type. A service can support multiple bindings for a given port type.
Each binding is addressed via a unique Uniform Resource Identifier (URI).
Figure 2-3 on page 13 shows the relationship between a service, its port type,
bindings, their URIs and the messages that are transferred. As can be seen, a
service provides access to a given resource. It may contains multiple port types.
Each port type defines one or more operations. More than one binding can be
connected to one port type.

Solicit-response Output element
Input element

The endpoint sends a
message and receives a
correlated message

Notification Output element The endpoint sends a
message

MEP Order Description
12 Grid Services Programming and Application Enablement

Figure 2-3 Relationship of WSDL elements

Resource

Service

PortType
{
operations
}

PortType
{
operations
}

URI URI URI URI

Binding

Ports

Message Message
 Chapter 2. Service Oriented Architecture 13

Figure 2-4 shows an example of bindings. In a WSDL document, the binding
information is specified within the binding section and contains the following
elements.

Figure 2-4 Service bindings definition part of an example Web service definition

Name and type The binding is specified for a given port type. In the
example, the binding name is MOTDSoapBinding and it is
specified for the MOTD1 port type.

Style The binding style defines the communication used by the
transport protocol when invoking the operations of the
specified port type. The WSDL specification defines two
types of binding styles for SOAP: Document style and
RPC style. Using Document style, all the information is
encapsulated in one XML document and is defined by an
XML schema. Using RPC style, the body of a SOAP
message is used to represent a function call and the
elements are represented as parameters within it. In the
example, an RPC type of communication is supported.

Transport The transport specifies the protocol used for the
communication. The transport details specified in the
binding are applicable for all the operations defined within
the specified port type. In the example, SOAP over HTTP
was chosen.

Encoding style In addition to the binding style, the WSDL specification
specify two encoding styles for each message set in the
use attribute: Encoded or Literal. The Encoded style uses
SOAP encoding rules to map the abstract data types to

<wsdl:binding name="MOTDSoapBinding" type="impl:MOTD1">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMOTD">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMOTDRequest">
 <wsdlsoap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://DefaultNamespace"/>
 </wsdl:input>
 <wsdl:output name="getMOTDResponse">
 <wsdlsoap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://DefaultNamespace"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>
14 Grid Services Programming and Application Enablement

concrete data. On the contrary, using Literal encoding the
abstract data type produces the concrete data. Combining
the binding style and encoding style provides four
different communication models, namely, RPC/Encoded,
RPC/Literal, Document/Encoded, and Document/Literal.
In the example, the getMOTD operation with the
associated getMOTDRequest and getMOTDResponse
messages uses the RPC/Encoded style of
communication. In addition, the rules for encoding and
decoding the data are specified at the address
http://schemas.xmlsoap.org/soap/encoding/. The types
to be used are defined in the http://DefaultNamespace
namespace.

Service Implementation
The Service Implementation provides implementation-specific details that the
Service Requestor can use to request the various operations offered by the Web
service. An example is shown in Figure 2-5.

Figure 2-5 Service implementation definition part of an example Web service definition

The following are the key elements specified for the Service Implementation:

Service The service name defines the name of the Web service
that is providing the operations specified in the port types.
In the example, the service name is MOTD1Service.

Port A port is merely an end-point that is offering the service.
The Service Requestor binds or connects to the port to
access the service. The name of the port, the protocol
bindings that it will use for communicating and the
address of the port when using the specified protocol are
specified in the WSDL. In the example, the name of the
port is MOTD; it uses the previous defined
MOTDSoapBinding binding, and has an address of
http://localhost:8080/services/MOTD.

<wsdl:service name="MOTD1Service">
 <wsdl:port name="MOTD" binding="impl:MOTDSoapBinding">
 <wsdlsoap:address location="http://localhost:8080/services/MOTD"/>
 </wsdl:port>
</wsdl:service>
 Chapter 2. Service Oriented Architecture 15

http://localhost:8080/services/MOTD
http://schemas.xmlsoap.org/soap/encoding/

2.3.2 Simple Object Access Protocol (SOAP)
Simple Object Access Protocol (SOAP) is an XML-based messaging protocol.
The SOAP specification defines a mechanism for the exchange of structured
information in a decentralized, distributed environment. Within the Web services
framework, SOAP is used as a protocol for communication between the three key
elements of SOA defined earlier: the Service Provider, Service Requestor, and
Service Registry.

SOAP is platform- and language-independent and hence can be effectively used
for communication between the Web service entities implemented in a variety of
languages and across several platforms. It is also transport protocol
independent. Hence, it can be used with a variety of transport protocols, even
though its use with the HTTP protocol for Web services is very common.

In order to illustrate this communication, Figure 2-6 and Figure 2-7 on page 17
show a sample SOAP message sent from a Service Requestor to a Service
Provider, requesting an invocation of an operation specified within the Web
service, and its respective returned message. Both messages use the HTTP
protocol for transport and are embedded in an HTTP request and response.

Figure 2-6 SOAP Message from the Service Requestor to the Service Provider

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:getMOTD soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:itso">
 <ns1:arg0 xsi:type="xsd:string">world</ns1:arg0>
 </ns1:getMOTD>
 </soapenv:Body>
</soapenv:Envelope>
16 Grid Services Programming and Application Enablement

Figure 2-7 SOAP message from the Service Provider to the Service Requestor

The following SOAP elements shall be noted:

Table 2-2 SOAP elements

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:getMOTDResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:itso">
 <getMOTDReturn xsi:type="xsd:string">hello: world</getMOTDReturn>
 </ns1:getMOTDResponse>
 </soapenv:Body>
</soapenv:Envelope>

Element name Function

Namespaces In order to provide interoperability
between different programming
languages that can potentially implement
and use the Web service, various
language-independent namespaces are
defined and specified within the SOAP
message. As can be seen in the example,
the schema that defines the elements of
the SOAP envelope themselves are
specified in the
xmlns:soapenv =
http://schemas.xmlsoap.org/soap/enve
lope/ namespace. Similarly, xmlns:xsd =
"http://www.w3.org/2001/XMLSchema”
and xmlns:xsi =
"http://www.w3.org/2001/XMLSchema-
instance” specify the namespaces
describing the schemas of the various
elements used in the SOAP message.
 Chapter 2. Service Oriented Architecture 17

Encodings Encodings define how data values defined
in the application can be translated to and
from the protocol format, here the format
specified in the language-neutral SOAP
messages. These translation steps are
referred to as serialization and
deserialization. Thus, the SOAP
encoding tells the SOAP runtime
environment how to translate from data
structures constructed in a specific
programming language into SOAP XML,
and vice versa. The
soapenv:encodingStyle =
"http://schemas.xmlsoap.org/soap/
encoding/" present in the SOAP message
body specifies the encoding to be used for
serializing and deserializing the data
elements specified in the SOAP message.

Uniform Resource Name (URN) of
the Web service

The URN uniquely specifies the Web
service to the Service Requestor. The
URN must be unique among all the
services deployed in the SOAP server,
that is the implementation engine of the
Web services provider. The URN in the
example is itso and it is specified as
urn:itso. This URN is unique within the
SOAP server
127.0.0.1/axis/services/MOTD specified
in the transport protocol dependent HTTP
header.

Method name The name of the operation or the method
being invoked within the Web service. The
method name is specified in the SOAP
body. In the example of Figure 2-7
“ns1:getMOTD” is the specification of the
method getMOTD within the Web service.

Input parameter The method may take as input zero or
more parameters. The parameters are
specified in the SOAP body right after the
definition of the method name. In the
example shown in Figure 2-6, the method
has one input argument and is specified
with the ns1:arg0 tag. It takes a string
argument and a value of world is passed.

Element name Function
18 Grid Services Programming and Application Enablement

2.3.3 Universal Description, Discovery, and Integration (UDDI)
Universal Description, Discovery and Integration (UDDI) is a specification that
defines the mechanisms for storing and searching the Web services definitions
defined in the WSDL documents. The Service Provider advertises the Web
services it offers by registering the WSDL definitions of its services in the UDDI
registry. The Service Requestor obtains the service details from the UDDI
registry either at build time or at runtime. There are tools available on the market
that enable the Service Requestor to generate language-, platform- and
protocol-specific service proxies based on the service information provided in the
WSDL document. Hence, at build time, the Service Requestor can search for the
appropriate WSDL, generate the proxy, and incorporate it in its application to
access the service offered by the Web service.

In addition to the tools, there are language-specific libraries available for
programmatic interaction with the UDDI registry. For example, UDDI4J,
supported by IBM, is a Java class library for interacting with the UDDI registry.
Similarly, there are language-specific packages to dynamically interpret the
WSDLs and to invoke the Web services remotely. Using these runtime libraries,
the Service Provider can obtain the service descriptions from the UDDI registry
dynamically and invoke the services at runtime.

Output result The method can potentially return an
output value as a result of the invocation.
The output value is returned from the
Service Provider to the Service Requestor
in a response SOAP message. Figure 2-7
shows the response message; the output
result value is specified within the
getMOTDReturn tags. A string value of
hello world is returned.

Element name Function
 Chapter 2. Service Oriented Architecture 19

20 Grid Services Programming and Application Enablement

Chapter 3. Open Grid Services
Architecture

This chapter introduces the fundamentals of grid services and the challenges
that they impose. Theses concepts, plus a general grid framework form the Open
Grid Services Architecture (OGSA), which uses Web services as its main
technology to enable grid services.

3

© Copyright IBM Corp. 2004. All rights reserved. 21

3.1 Introduction
The OGSA concepts drive the development of the interfaces and protocol
specifications, called Open Grid Services Infrastructure (OGSI), which extends
WSDL and XML specifications and provides other mechanisms to satisfy grid
requirements, and is also shown in this chapter, in addition to a brief overview of
the incoming evolutions.

The major goal of grid technology is to promote a virtual computing environment,
which means the use of a set of services, through the transparent and
coordinated use of distributed and heterogeneous resources. Services are the
abstraction of resources, and they can be computing cycles, software,
documents, data, storage, and so on.

In order to make this both real and useful, some challenges must be met:

� Transparent means that the user will use this environment with the same
quality he or she would get using a local system. Therefore, the grid shall
provide easy tools to assist users to specify their needs of services and
qualities and good Quality of Service (QoS), which in this case means fast
services access using smart authentication and high-speed communication.

� Coordinate means that it is necessary to have a management system that
provides matching users' needs and resource availability, monitoring the
services’ use and providing additional services facilities, such as local
resource control, resource performance and state control, logging, and
security, among others.

� Distributed and heterogeneous means that interoperability is necessary, and
so is a common and standardized interface that translates users' needs and
resources availability in one single language, regardless of the hardware,
software and operation system of each distributed resource.

One can observe that the use of Web services, and further the Web Service
Description Language (WSDL), the Simple Object Access Protocol (SOAP) and
the Universal Description, Discovery and Integration (UDDI), match grid services
requirements. These specifications provide much of the interoperability and
transparence in grid services demand.

As can be seen in this scenario, the Globus Alliance has developed the first
implementation Open Grid Services Architecture (OGSA), and then takes into
account the contributions of the Global Grid Forum's OGSA Working Group
(GGF-OGSA-WG).

The main idea of OGSA is to define the framework, architecture and
functionalities of grid systems that will drive the development of the Open Grid
Services Infrastructure (OGSI) by the GGF-OGSI-WG.
22 Grid Services Programming and Application Enablement

OGSI defines the conventions and specifications of the grid services, their
protocols and interfaces’ behavior, properties and attributes, based on Web
services specifications plus many other extensions. This document is based on
the OGSI version 1.0 because it is a version that is more known and ready to
implement, more suitable for commercial applications. However, evolutions are
been considered by OGSA-WG, such as that issued in January 2004, a first
version of the Web Services Resource Framework (WSRF).

With OGSI, it is already possible to implement grid applications. However, there
are some toolkits available which provide libraries and tools to aid this process,
like the Globus Toolkit, currently in version 3 (GT3), and the IBM Grid Toolbox.
These will be presented in the next chapters.

Figure 3-1 summarize the role scenario and the main technologies involved in
the deployment of grid services: OGSA, OGSI and GT3.

Figure 3-1 The relationship among OGSA, OGSI and GT3

extends

Reference
implementation

Grid Services

defines Specifications

WebService GT3

OGSI
OGSA
 Chapter 3. Open Grid Services Architecture 23

3.2 OGSA mechanisms
This chapter presents some issues and directions taken by Globus and GGF in
order to address the challenges of enabling virtual organizations. Some of them
are discussed in detail in Chapter 5, “Major features of grid services” on page 59.

3.2.1 Interoperability
The problem of seamless integration of services architected on OGSA was
addressed by separating the interfaces definition and the protocol bindings
through WSDL and the usage of Service Oriented Architecture for OGSA
framework.

The idea of uniform service interface definition (that is, service semantics)
includes a layer of abstraction to hide the platform specific implementation. This
adds up to the concept of virtualization of services and adds to the fluidity of
virtual organization.

The quality of service (reliability), authentication, authorization, credential
delegation are handled as the properties of bindings.

The advantage of this implementation is more fluidity in forming various groups of
interfaces to protocol bindings as required by the client. Also, the abstraction
provided by the grid service interface will provide more implementation-free
integration of client services to the services of a service provider. The freedom of
implementation of services based on native platform facilities and the global rule
for grid services to abide by uniform grid service interface pattern thus solve the
problem of interoperability.

3.2.2 Discovery and access of resources
The requirement of discovering and accessing the resources was addressed in
three parts in OGSA:

1. A standard representation of service data, containing information about grid
service instance and represented in XML structures.

2. A standard operation, FindServiceData, to retrieve service data from
individual grid service instances.

3. A standard interface registry, for registering the information about the grid
service instances.
24 Grid Services Programming and Application Enablement

3.2.3 Independent upgradability
The problem of upgradability of grid service instances and maintenance of
versioning information was addressed by defining OGSA mechanisms, to refresh
the client's knowledge of service, such as an upgrade of services supported, an
upgrade to a host platform or any other domain specific upgrade details
applicable to the client. The service description includes protocol-binding
properties that will be used to communicate with the service. Two properties are
often needed in such communications: reliable service invocation and
authentication.

3.2.4 Transient life cycle management of resources
In a dynamic environment, services are created and need to be destroyed when
no longer needed. The grid services architecture addresses this life cycle issue
through a soft state approach, where grid services are created with a specified
initial lifetime. The initial lifetime can be extended by a specified time period by
explicit request of the client service or by another service, which has credential
delegations of the client. In this architecture, client will be sending "Keep alive"
messages to keep the service active in a providers system. If the client does not
need the service, it stops sending "keep alive" messages. This situation can also
be due to the breakdown of the software system at the client’s end or any
component failure in the grid services workflow. After the expiration of a set time
period for the provider's service, the provider's host environment or the service
by itself has the freedom to terminate and release the resources consumed so
far for the purpose of client.

The grid service interface has an operation called SetTerminationTime for the
purpose of setting up an initial time period for a service, used by the client. There
are operations available for grid service instances, with which the client will be
able to know when the service will terminate. Depending on computational
needs, the extend operation can also be used to extend the lifetime of the
desired services.

Also, the client can negotiate the expiration time set during the initial creation of
the service using a set of operations for grid service. This operation allows the
client to send maximum and minimum acceptable expiration times for a service.
If the provider agrees to a customer request and can provide a service whose
expiration time falls between the maximum and minimum, then the factory
service instance creates the service for the client.

The clock synchronization used here for the process of determining time is based
on Network Time Protocol (NTP). Using this protocol, time is synchronized
between all grid services to an accuracy of tens of milliseconds.
 Chapter 3. Open Grid Services Architecture 25

3.2.5 Services state - grid service handle and reference
The state nature of every service actually changes throughout its lifetime, so it is
necessary to have some process that manages these states. OGSA addresses
this requirement by defining Service Data Elements that will store the service
states and maintain them until the end of the service lifetime. The stored service
state will be accessible via the grid service interfaces defined in OGSA. The
change in service states will be passed on to co-services in the grid by
asynchronous state change notification. Traditional messaging protocols
techniques like publishing/subscription will be used.

The co-services interested in receiving the state changes will request notification
from the service provider's service. Similarly, the provider's services interested in
notifying all client services will publish their state-related information for the
information of all co-services.

In the grid architecture, the service definition is separate from the actual service
instances. One single interface can have more than one instance active at the
same time, serving multiple client services. Hence, one of the OGSA services
creates service instances handle and maps them to actual service interface
definition handle. Therefore, a mapping between the service definition and the
service instance is maintained in registry of OGSA.

As the service instance is created, a unique service instance identifier is
allocated to it, called Grid Service Handle (GSH). This is invariable and unique to
the service instance even over a time period. If a co-service wants to re-start the
terminated service instance and regain control of some resources in the client
system, it can do so using a GSH, since it remains unique even over time.

There is also more information about that specific service stored by the Grid
Service Reference (GSR). In a different way than GSH, GSR may vary over time
for a single service instance over the lifetime of the service and has a set
termination time after which it expires. For example, the versioning information of
the grid service and protocol binding information to the grid service are not
carried by GSH; instead, GSR maintains it.

OGSA also defines mapping mechanisms for obtaining the updated GSR. The
result of using an expired GSR is undefined.

3.2.6 Factory
OGSA defines an interface called Factory for creating new grid service
instances. The Factory interface receives requests from client services and
responds with a GSH and initial GSR after successfully creating the service
instance. As complexity increases in the grid, from simple hosting environments
to collective virtual hosting environments, factories will have multiple levels, for
26 Grid Services Programming and Application Enablement

instance higher and lower. Higher-level factories will delegate work to one or
many of the multiple lower level factories under its reign, to accomplish a specific
task.

3.2.7 Dynamic resolution of transient references from permanent
handles

After the generation of GSH and initial GSR by the factory, OGSA defines a
dynamic way to resolve the references between GSR and GSH through a new
interface called HandleMap. This allows the client service to identify the new
GSR. This interface maintains the latest mapping between the Handles (GSH)
and References (GSR). The handle map interface will not return references to
service instances that it knows have terminated. On the other hand, for the client
service, possession of GSR does not imply it is valid, because by the time the
client receives a GSR, it may have already expired or terminated for various
reasons.

The handle map interface will return the most recent and valid GSR, if supplied a
GSH. To identify the handle map interface, GSH will have the URL of the (home)
HandleMap interface included in it. Thus, once GSH is obtained, GSR can be
obtained by contacting the handle map interface.

But the protocol information to contact handle map information will be in GSR
and not in GSH. How do we contact the handle map, and what protocol should
be used for communication with HandleMap? The grid team decided to use the
HTTP GET operation to speak to the HandleMap interface using the supplied
GSH. In return, HandleMap returns GSR for the GSH requested in WSDL format.

Also, there must be a way in which Factory and HandleMap interfaces can
communicate. Factory, as soon as it creates GSH (which contains the contact
information and URL to contact the HandleMap interface), registers it to (home)
HandleMap for a specific GSR. As the GSR evolves over a period of time,
HandleMap maintains a track of it and supplies the recent WSDL document to
the client services upon request.

3.2.8 Service data element and registry interface
Every service instance in grid technology has its own unique information needed
later during its lifetime (such as time-to-live information of the service, GSH,
GSR, HandleMap, etc.). All these data elements are nothing but XML elements
contained in a single wrapper called Service Data Element.

Using the FindServiceData, a WSDL operation, one can retrieve the Service
Data Elements for a particular service instance. But, for all this to happen,
 Chapter 3. Open Grid Services Architecture 27

Service Data Element needs to be stored and maintained in a specific place.
Hence the need for Registry Interface, which provides the service of supplying
Service Data Elements for a given service instance.

It is important to tie Factory, Registry and HandleMap since they are linked to
each other in a particular fashion. When a factory receives a client request to
create a grid service instance, the factory invokes hosting-environment specific
capabilities to create the new instance, assigns it a handle (GSH), registers the
instance with a service registry, and makes the handle available to the
HandleMap service.

3.2.9 Asynchronous notification of state changes
The changes to the state of the service will take place throughout the existence
of the service’s lifetime. The co-services and services that are authorized to
received and process information related to grid service state change will
subscribe to the grid service for notification (source/sink). Similarly, the service
provider service will use grid service interfaces for notification to publish the state
change related information for other co-services which need them.

The OGSA framework addresses notification services in two parts. One is the
Sender of notification, called the notification source, which will implement the
notification source interface to publish and receive subscriptions to its notification
messages. The second part is the receiver of notification messages, called the
notification receiver, which will use the notification sink interface to receive the
notification message.

The service that wishes to receive notification will supply the GSH (for the
service, which needs notification) to the notification source interface. Then,
notification messages start flowing to and from the notification source/sink.
Reliability of the messages delivered is left to the protocol bindings of these
services. These could be open protocols like UDP or proprietary messaging
services.

3.3 Open Grid Services Infrastructure (OGSI)
The Open Grid Services Infrastructure 1.0 (OGSI) provides the conventions and
specifications of many actions that take place in a grid system, for instance, the
requester's services of creating, discovering and interacting, as well as other
management services.

OGSI extends WSDL version 1.1 and XML definitions, improving new services in
order to fit grid needs. Many of these extensions have been incorporated in
WSDL 1.2. However, it is important to pay attention to the upcoming
28 Grid Services Programming and Application Enablement

specifications published by GGF, such as WSRF. More information about WSRF
can be found in Appendix G, “WSRF” on page 261.

3.3.1 OGSI interfaces and their operations
The grid service is the base component of this distributed component object
model, so-called OGSA, even though it is not a completely traditional distributed
object-ased system. There are different port types (portType) that add on to this
grid service (like a base class in the object model) to extend a combination of
grid service port types, so as to meet different requirements we discussed in 3.2,
“OGSA mechanisms” on page 24. Different port types that extend the grid
service functionality will be discussed in detail in the next sections.

One extension proposed by OSGI to the Web services community is the
mechanism of Service Data. Its role is to expose the instance of a service to
requestors, providing a stateful system, through values of Service Data Elements
(SDE).

We will start by explaining the GridService port type, which is the basic port type.
We will discuss the purpose of each port type and operations that are available in
each port type. As the definitions are highly evolving in this area, it is suggested
that you refer to the GGF Web site (http://www.ggf.org/) for the latest version
of Open Grid Services Infrastructure specifications.

GridService port type
We have stated that everything implemented in grid technology is a service and
can be accessed via service operations. This could vary from notification to
lifetime management;whatever functionality it is, it needs to be extended from a
base service model, known as the GridService port type.

The GridService port type is like the base class (in the object-oriented
languages) whose properties can be extended to suit different needs. This is the
port type that must be implemented for any grid service in OGSI.

Available SDEs for the GridService port type
Various Service Data Elements (SDE) that are available in the GridService port
type:

� Interface
� ServiceDataName (Service Data Element supported by this instance)
� factoryLocator (service locator to the factory that created the grid service

instance)
� GridServiceHandle (GSH)
� GridServiceReference (GSR)
 Chapter 3. Open Grid Services Architecture 29

http://www.ggf.org/

� findServiceDataExtensibility (element used for querying service data
operations)

� setServiceDataExtensibility (element used for update service data
operations)

� termination time (termination time for the service instance)

Various operations that can be performed using this interface are as follows.

FindServiceData operation
This queries the service data. FindServiceData operation takes an input query
expression, which conforms to an inputElements declaration denoted by one of
the FindServiceDataExtensibility SDE values. The service instance infers what to
do based on the tag of the root element of this argument. Output to this operation
is the result of the query.

The type of query expressions supported by an interface is expressed in
instances FindServiceDataExtensibility SDE values. Therefore, a client can
discover the query expression types supported by the instance by performing a
FindServiceData request on the instance, using the queryByServiceDataNames
with the name FindServiceDataExtensibility.

QueryByServiceDataNames operation
This operation queries the serviceDataValues of any particular
ServiceDataElement contained in the ServiceDataName service in the service
instance.

SetServiceData operation
If any ServiceDataElement is modifiable (=True) as per the service data
declaration in the service instance, then you can use this operation to modify the
values of the particular SDE. This operation takes an UpdateExpression and
outputs the result of the update.

Similar to query expressions, the type of update expression supported by an
interface is expressed in instance setServiceDataExtensibility SDE values.
Therefore, a client can discover the query expression types supported by the
instance by performing a FindServiceData request on the instance, using the
queryByServiceDataNames element with the name of
setServiceDataExtensibility.

SetServiceDataByNames operation
Use this operation to update any particular SDE values in Service Data Element
of a service instance. The service data name is modifiable (=true) only when this
operation succeeds. Note that this operation does not guarantee an update in
any particular sequence. In case of failure, failed elements will be returned with a
fault cause for each element failed. Also, depending on the mutability of the
30 Grid Services Programming and Application Enablement

element, the updating succeeds or fails. If the mutability value is static or
constant, then setByServiceDataNames is not allowed. If the mutability value is
extendable, then setByServiceDataNames must append to the new elements to
the SDE's existing values.

DeleteByServiceDataNames operation
This operation deletes the Service Data Elements, which are listed in
ServiceDataNames for the service instance. Also, the modifiable attribute should
be True for the operation to successfully delete the element. Note that there is no
guarantee that this operation will delete elements in a particular sequence.
Deletion is not allowed for elements whose mutability value is static, constant
or extendable. If the mutability value is mutable, then
deleteByServiceDataNames will delete all elements with the SDE names
requested.

RequestTerminationAfter/Before operations
Use the above two operations to change the termination time of the grid service
instance to either the earliest time or a later time than the initial termination time
set for the instance. The input to this operation is ExtendedDateTimeType
Termination Time value and the return value is the Current Termination Time of
type TerminationTime.

Destroy operation
As the name implies, this operation is used to destroy the grid service instance.
Once the client uses this operation, the receiving end should either (a) initiate its
own destruction and return the acknowledgement to the client service or (b)
return failure indicating it was unable to destroy. After the initiation of destruction,
the service instance should not respond to any further requests from client. The
client, after receiving a successful destroy response, should not reply on the
existence of service instance.

Factory port type
The factory grid service creates a new grid service instance on the client’s
request. The client uses a factory operation called createService to create a grid
service and receives a locator, a GSH, in response. The client requests the
minimum and maximum lifetimes for the service instance created. Depending on
the governing local policies, this time may or may not be set to the created
service instance. Along with GSH, the current termination time is also returned to
the requesting service. The new grid service creation will fail if the time
requested is not within the acceptable range. Apart from createService, there are
no operations defined for the Factory port type.
 Chapter 3. Open Grid Services Architecture 31

The only Service Data Element defined for this port type is
createServiceExtensibility. This includes a set of operation extensible
declarations for the create service operation.

HandleResolver port type
HandleResolver is a port type which performs an operation, taking a GSH, and
resolves the GSH using a GSH-to-GSR reference table; it returns a GSR in
response. A grid service instance, which extends this HandleResolver port type
capability, is called handle resolver.

There is one Service Data Element, called handleResolverScheme. This holds
the set of GSH URIs that the handle resolver service instance can resolve.

There is one operation in the handle resolver, called findByHandle. This takes
one or more GSH as input parameters (HandleSet) and resolves them. This
operation returns a set of GSRs (Locator) corresponding to each GSH
requested.

NotificationSource port type
The notification source is a grid service instance that implements the
NotificationSource port type and can send any number of notification messages
to any number of notification receivers called notification sink.

Notification message is an XML element sent from a notification source to sink.

Apart from the source, sink and message, there is a set of rules which governs
when a notification will be sent from source to sink and what kind of message will
be sent in what kind of situation (the SDE value changes within a service
instance). These rules are called subscription expressions.

To initiate subscription, the client prepares and sends a subscription request that
contains a subscription expression, locator of notification sink (where messages
are to be sent), and an initial lifetime for the subscription. Once the serving end
receives a subscription request, it creates a service instance called subscription,
which implements the NotificationSubscription port type. Clients to manage the
lifetime of the subscription and to discover properties of subscription use this port
type.

There are two Service Data Elements in this port type implementation:
NotifiableServiceDataName holds the set of Service Data Elements for the
service instance for which subscription operation can be performed.
SubscribeExtensibility is used to extend the capabilities of the subscription by
defining new query expressions that are more powerful and more customized to
a specific problem domain.
32 Grid Services Programming and Application Enablement

There are two operations that are allowed in this port type implementation. One
is the Subscribe operation and the other is subscribeByServiceDataNames.

Subscribe operation
This operation is used by the notification sink to subscribe to specific service
data change notifications from the NotificationSource port type. This operation
needs three inputs: a subscription expression, a sink locator, and an initial
expiration time for the subscription instance. This operation returns a locator to
the subscription instance that was created to manage the subscription and
current termination time for notificationSubscription instance.

SubscribeByServiceDataNames operation
This operation results in notification messages being sent whenever any named
Service Data Elements change. There are two intervals when you subscribe to a
notification source. One is maxInterval and the other is minInterval. MinInterval is
the minimum time interval between the notification messages. MaxInterval is the
maximum time interval between the notification messages; if there is no change
to service data within the maximum time interval, then the last sent notification
will be resent.

NotificationSubscription port type
As the notification sink subscribes to notification messages to a source, a
notification subscription service instance will be created. This service instance
implements the NotificationSubscription port type and extends the GridService
port type. Clients use this subscription to manage the lifetime of the subscription
and the properties of subscription.

This port type includes the following Service Data Elements.

SubscriptionExpression SDE
The current subscription expression managed by the subscription instance.

SinkLocator SDE
The locator of the Notification Sink to which messages are being delivered by
this service instance.

There are no operations defined in this port type.

NotificationSink port type
The notification sink is a grid service that implements the NotificationSink port
type and can receive any number of messages from any number of notification
sources.
 Chapter 3. Open Grid Services Architecture 33

The NotificationSink port type does not have any Service Data Elements. It has
one operation called deliverNotification, using which the subscription instance
will be able to deliver messages to this notification sink service instance. This
operation takes an XML element (message) containing the notification message.
It does not return any value.

ServiceGroup port type
A service group is a grid service instance that maintains information about a
group of other grid service instances. The grouping may be due to the nature of
the service provided or may be an index of all services provided by an
organization, or they may have no specific relationship.

The ServiceGroup port type provides an interface for representing a service
group with zero or more member services. An Entry SDE identifies each service
instance in the service group. The management capabilities (such as lifetime
management, GSH management and other entry management functions) are
handled by a separate service group port type called ServiceGroupEntry.

After the service group is destroyed, the client can make no assumptions about
the existence of individual service group entries listed in that service group. Also,
a grid service is not restricted to be only in one service group instance.

This port type establishes two Service Data Elements, as follows.

MembershipContentRule SDE
This SDE is an association between the port type (memberInterface) with a set of
XSD element QNames (content). This SDE serves as a "data type invariant" for
the Entry SDE values of the service group and for the content SDE value of the
ServiceGroupEntry for the services in the ServiceGroup. This means that
membership is restricted to only grid services that confirm these
MembershipContentRule SDE values.

Entry SDE
There is one entry for every grid service in the service group. Each entry value is
made up of three parts:

1. A locator that refers to the ServiceGroupEntry service instance that manages
this entry

2. A locator to the member grid service instance referred by this entry

3. The content of the entry

There are no operations defined for this port type.
34 Grid Services Programming and Application Enablement

ServiceGroupRegistration port type
A grid service that extends the ServiceGroup port type and implements the
ServiceGroupRegistration port type acts as an interface to manage the entries in
the ServiceGroup port type.

There are addExtensibility and removeExtensibility SDE values available for this
port type in order to manage add and remove operations supported by this port
type.

There are two operations supported by the ServiceGroupRegistration port type:
add and remove.

Add operation
The add operation adds a ServiceGroupEntry to the ServiceGroup. The input to
this operation would be serviceLocator (pointing to the added member
GridService), content (to associate with the service locator in the service group),
TerminationTime (termination time for the added ServiceGroupEntry instance).
The operation, upon success, returns a service locator and current termination
time.

Remove operation
The remove operation removes a ServiceGroupEntry from the ServiceGroup. It
takes an expression (MatchExpression) as input that matches the
ServiceGroupEntry to be removed. This parameter is extensible. An
acknowledgement will be returned after the successful completion of the
operation.

ServiceGroupEntry port type
This port type is used to manage the properties and SDE values of the individual
ServiceGroupEntry, which points to the actual grid service instances. This port
type extends the GridService port type and implements the serviceGroupEntry
port type.

There are two SDE for this port type. They are as follows.

MemberServiceLocator SDE
This SDE contains a service locator to the member grid service instance to which
this entry pertains. The handles and references contained in this locator might
change during the course of the service instance’s lifetime.
 Chapter 3. Open Grid Services Architecture 35

Content SDE
This SDE holds information about the member service instance located using the
MemberServiceLocator.

There are currently no operations defined for this port type.
36 Grid Services Programming and Application Enablement

Chapter 4. Grid services development

This chapter describes a simplified method that embraces the complete
development cycle of a grid service, providing straightforward guidelines on how
to code, build and deploy a grid service in an arbitrary hosting environment.

A lengthy step-by-step approach with an illustrative example is taken so that no
prior knowledge on developing grid services is required.

4

© Copyright IBM Corp. 2004. All rights reserved. 37

4.1 Introduction
The development of a grid service follows the concepts of Web services, but
demands some extra requirements. Thus, a previous knowledge of Web services
is welcome, but it is not enough, since specification and development are quite
different. In any case, some background for Web services is presented in
Appendix B, “Web service development” on page 213.

The Globus Toolkit 3.0 (GT3) offers the basic set of tools and libraries that allow
the task of grid application development. This chapter is very much based on
GT3 documents and developments.

Systems that are more complex may follow detailed developments procedures
presented further in this document. This chapter has a simplified methodology
that quickly leads to practical results.

In addition, although this sample is developed with grid tools, it is not a really grid
example, since it does not have multiples clients, but a single client-server pair. A
more realistic grid example, though simple, is presented in the next chapters.

4.1.1 Development machine
Here we describe the system we used for the development machine.

� CPU

Building a grid service is a multi-step process but generally fairly quick to
complete. Developers usually want high CPU speeds since faster is better. If
developers will be running grid service tests directly on the development
machine, please see the recommendation in the section below.

� Physical memory

The memory used during compilation of a grid service code is defined by the
javac overhead plus the number of Java Archives (JAR) files referenced by
the module under compilation. Developer systems with 512 MB of RAM have
comfortably served as GT3 development platforms, but as the grid service
becomes larger, watch the system’s memory usage and upgrade when
swapping is apparent. If developers will be running grid service tests directly
on the development machine, see the recommendation in the section below.

Operating system and tools
GT3 service development can be performed on many operating systems
including Linux, most Unix and recent Windows® versions. Services using only
Java code should build on any certified Java platform.
38 Grid Services Programming and Application Enablement

� Required tools

– Java 2 Standard Edition (J2SE) 1.3.1 Software Development Kit (SDK)
certified for your platform.

– Jakarta ant 1.5.

– JAAS library as a separate download if you are using J2SE 1.3.

� Optional tools

– Java 2 Standard Edition SDK 1.4+. This is required by some of the higher
level services, like the Index Service and Execution Service, due to issues
with some implementations of JDK 1.3.1.

– Jakarta Tomcat 4.1.24 (4.0.6 has also been tested to work). A standalone
Web service container is provided for testing purposes, but some users
choose to deploy into Tomcat for production use.

– Junit 3.8.1 if you want to run tests from the source.

4.1.2 Server machine
The server machine is part of the grid and it should provide the service. It must
have GT3 installed on it.

� CPU

The GT3 software itself is not computation-intensive, so the CPU of the GT3
server should be chosen with the computational requirements of the jobs it
will run. If the CPU can adequately support the computational requirements of
the deployed grid services, the Globus Toolkit software should not add any
significant overhead.

� Physical memory

The GT3 software itself is not memory-intensive, so any system with an
amount of memory sufficient to support its deployed grid services will perform
adequately.

Operating system and tools
GT3 runs on many operating systems including Linux, most Unix and recent
Windows versions. The core of GT3 is pure Java and should run on any certified
Java platform. Some additional components of GT3 use non-Java code and
therefore are platform-specific. Because the list of supported systems is growing,
please check the GT3 Web site.

� Bundled tools
� Third-party tools

GT3 is shipped with a number of third-party tools. They are packaged with the
GT3 distributions, so in general you don't have to worry about these. The
 Chapter 4. Grid services development 39

tools mentioned here are for reference purposes, it is not recommended that
you replace any of these tools with another version you may already have.

– Apache Axis post 1.1 final CVS checkout [06/18/2003]

http://xml.apache.org/axis

– Java CoG Kit post 1.1a CVS checkout [06/19/2003]

http://www.globus.org/cog/java/1.1a

– Apache Xerces 2.4.0 (JAXP 1.2)

http://xml.apache.org/xerces2-j/

– Apache-XML-Security-J 1.0.4

http://xml.apache.org/security/index.html

� Required tools

– Java 2 Standard Edition 1.3.1 Java Runtime Environment (JRE), or the
SDK above if this is more convenient, certified for your platform.

– Jakarta ant 1.5.

– JAAS library as a separate download if you are using J2SE 1.3.

� Optional tools

– Java 2 Standard Edition JRE 1.4+. This is required by some of the higher
level services, like the Index Service and Execution Service, due to issues
with some implementations of JRE 1.3.1.

– Jakarta Tomcat 4.1.24 (4.0.6 has also been tested to work). A standalone
Web service container is provided for testing purposes, but some users
choose to deploy into Tomcat for production use.

– A JDBC compliant database. The Reliable File Transfer (RFT) service and
Replica Location Service (RLS) use a database back end. GT3 ships the
Postgres JDBC driver, but other JDBC compliant databases should be
usable. The database table initialization script uses Postgres-specific
syntax and will require some porting effort to use with other databases.

4.1.3 Client machine
The grid service client machine makes use of the grid servers to get work done
around the grid. The power of the machine should match the amount of work the
client is expected to do: if it only runs a simple GT3 client application, almost any
machine will work. As the complexity of the client applications grows, more CPU
and RAM should be added until acceptable runtime performance is achieved.
Note that much of what the client application will be doing is communicating with
GT3 services on other machines, so the machine’s network performance may in
fact be more of a factor than CPU or RAM.
40 Grid Services Programming and Application Enablement

http://www.globus.org/cog/java/1.1a
http://xml.apache.org/axis
http://xml.apache.org/xerces2-j/
http://xml.apache.org/security/index.html

The client runs GT3-specific Java applications and these applications only work
if all of the required GT3 and related JAR libraries are present on the client
machine.

When you develop and run your GT3 client applications, you will quickly realize
JAR files are missing because you will get Class Not Found error messages. It is
possible, but tedious, to find out which JAR file the required class is in by
examining each one with the Java jar command or a GUI tool that understands
the JAR / ZIP file format.

This is a list of JAR files that were required for a very simple GT3 client
application. Use this list as a starting point and add any additional JAR files
which are required by your particular client application. The JAR files should be
added to the CLASSPATH just before you execute your client, for instance:

CLASSPATH=.:ogsa.jar:axis.jar:jaxrpc.jar:commons-logging.jar:cog-axis.jar:
saaj.jar:commons-discovery.jar:cog-jglobus.jar:xmlParserAPIs.jar:
xercesImpl.jar:jgss.jar:xmlsec.jar:xalan.jar:log4j-core.jar:
jce-jdk13-119.jar

4.2 Grid development basic method
This section first introduces the reader to the major steps involved in creating a
grid service, then goes through them with a simple but concrete example.

The grid service developed in this chapter has its functionality defined by a Java
interface. This interface will be the starting point of the service’s development
cycle.

By means of a Java interface, one can specify a set of methods. Each method
declaration corresponds to one specific operation and all the methods of an
interface should provide a comprehensive description of its functionality.

Using tools for coding, building and deploying grid services
The use of development tools for automating and/or simplifying the process of
coding, building and deploying a grid service is not only possible but also
recommended in most cases.

For coding, there are several IDEs (Integrated Development Environments) such
as Eclipse (or the commercialized IBM product WebSphere® Studio Application
Developer (WSAD)), and JBuilder that offer a wide range of features dedicated to
easing and speeding up the coding process. These tools have largely been
employed by professional enterprises and have proven to increase the
productivity of development teams by making their critical tasks less error-prone.
At this point in time, these tools have not had additional functionality included to
 Chapter 4. Grid services development 41

transparently build grid services. We expect this to change quickly since the tools
market is generally very quick to keep up with developer needs.

Despite their undeniable usefulness, these tools will not be addressed in this
chapter since we are focusing on the development process itself.

Major steps
The major steps concerning grid service development are as follows:

Specifying Phase to define the functionalities.

Coding Phase to generate and adapt the code, WSDL and then
the Java, using tools like Javac, Java2WSDL,
DecorateWSDL and GSDL2Java.

Building Phase to compile the code Java using Javac.

Packaging Phase to aggregate compiled code into a package, using
the JAR.

Deploying Phase to place WSDD files in the right place and
configure the container, using ant.

Testing Phase to test the application, what can be done through
some test code or some tool, like the Service Browser.

The next sections cover each of these phases.

4.2.1 Specifying
Before thinking about coding a grid service, a main concern should be the clear
definition of the functionality that this grid service should expose (or export). This
phase provides a low-level description of which tasks this service is capable of
performing and which information is necessary for these tasks to be
accomplished.

It is important to stress that knowing what a service is capable of doing is
completely different from knowing how the service performs its tasks. There are
virtually infinite ways of performing the same task and each of them has its own
pros and cons. This separation is a cornerstone of object-oriented design and we
fully exploit it in the grid service world.

4.2.2 Coding
This section addresses the main coding steps to be taken when developing a
grid service. It discusses the basics of interface paradigm programming and
introduces some simple rules of thumb that the developer has to be aware of to
produce clean and working code.
42 Grid Services Programming and Application Enablement

The coding process has two distinct phases: produce or develop the WSDL
code, then convert it to a programming language code.

Phase 1: Development of WSDL
When building a grid service, the developer must write a WSDL code file
containing the description of the grid service’s functionality.

If the developer does not already have the WSDL file, one possible way to begin
is to first describe Java interfaces, and then convert them to WSDL. If this is the
approach adopted, after defining the service interface in Java, it is necessary to
compile it to generate the service stubs, and then transform this code into WSDL.

For the compilation process, we have two options: to compile all the classes from
the directory where the root package com/ is placed or to modify the environment
variable CLASSPATH so that we can compile the classes from anywhere.

Then, the developer can use tools to automatically generate the WSDL file from
a Java interface, like Java2WSDL, detailed in Appendix C, “Java2WSDL and
WSDL2Java” on page 231 and discussed in Appendix B, “Web service
development” on page 213.

However, since the grid has specific requirements, and these are not
incorporated in the specification WSDL V1.0, one more step is necessary to
perform some modifications on the WSDL file, resulting in the Grid WSDL
(GWSDL) file. In the future, if the WSDL 1.2 specification actually includes all the
grid requirements, this step may be not necessary.

These conversion procedures ease the development process because they free
the developer from dealing with WSDL files, but they have their drawbacks: as
the degree of abstraction increases when automatically generated content is
incorporated to a process, the degree of control that the developer has over the
process tends to decrease.

A common approach is to use this automatically generated WSDL file as a
starting point for describing a grid service. As new features are incorporated, the
service becomes more sophisticated and the WSDL file is manually modified to
represent these changes.

Phase 2: Achievement of the Java code: the stubs
The second phase of coding consists of transforming the WSDL (or the GWSDL)
into a specific programming language code, in this case, Java, implying stubs
generation.

In the same way as for the Web services development process, after obtaining a
WSDL description of the grid service, you can generate the stub files. These files
 Chapter 4. Grid services development 43

are also generated automatically and provide the glue between the service itself
and its clients, so that invocations to the service appear to the clients as local
method calls.

The client side stub of a service acts as a proxy for the service and hides the
communication protocol and data conversions required to transmit the messages
from the client to the server. The client proxy is compiled and linked with the
client side code and provides a Java programming interface to the client. The
grid service messages are transferred as SOAP messages as specified in earlier
chapters. However, the client side proxy provides a Java programming interface
to the client and shields the client from the details.

Similarly, the server-side stub hides the data conversion and communication
protocol specifics from the server implementation. The server-side stub invokes
the server implementation by passing the incoming data values in the data types
of the Java language and converts the output data values of the server
implementation from the Java data types to the communication format before
transmitting them to the client.

When developing Java grid services for GT3, a set of tools can be used to
generate and manage the stub files from the GWSDL file, including the
GSDL2Java. Note that this is not the same as used for Web services (the
WSDL2Java, seen in Appendix B, “Web service development” on page 213)
because the WSDL file was converted to GWSDL. This process takes as input
the GWSDL file and produces the Java and WSDD files for both client and server
sides.

4.2.3 Building
When building a grid service, a series of compilation steps have to be taken in a
very specific way. Although some compiling has already been done in the coding
phase, it was only performed in order to prepare the final code. It is in the
building phase that the final code, in this case Java, is actually compiled. This is
also called service implementation.

Service implementation
The grid service implementation itself does not require any specific procedure
other than those required by Web services. In the case of a Java grid service, all
that should be done is to provide a grid-enabled implementation for all the
methods that define the service's functionality.

When developing Java grid services for the GT3 container, there are two options
for implementing such functionality: delegation and inheritance. Both approaches
are discussed in detail in the GT3 documentation (see
44 Grid Services Programming and Application Enablement

http://www-unix.globus.org/toolkit/documentation.html) but, in simple
terms, the most natural and flexible way is delegation.

In order to delegate to a Java class the ability to run in the GT3 container, this
class must implement the org.globus.ogsa.OperationProvider class. In this way,
all the methods required by the GT3 container to properly manage the class are
embedded in it, making it grid-enabled. One important detail about delegation is
that you can spread the implementation of the service's methods across multiple
classes, which might be very useful when dealing with legacy code.

The inheritance approach is simpler in the sense that it requires only the
implementation of the service's interface for the service class to become
grid-enabled. The remaining methods, required by the grid container, are
inherited from a standard class (namely, the
org.globus.ogsa.impl.ogsi.GridServiceImpl class) which has implemented the
OperationProvider interface itself. The main drawback of this approach is that,
since the Java language does not support multiple inheritance, it will not be
possible for the service class to inherit from any other class, which might be too
restrictive in many cases. More details and alternatives for this problem can be
found in Appendix E, “Delegation” on page 243.

The steps for compiling grid services written in other programming languages
may be similar, but will not be addressed in this document.

4.2.4 Packaging
Before deploying a grid service into its container, all its Java classes and
supplementary files must be placed inside a Grid Archive (GAR) file. A GAR file
is built with jar or zip tools, but has a very specific file layout, and a .gar
extension.

The rules that the developer has to be aware of when building a GAR file are the
following:

1. The Web service deployment descriptors (WSDD) file must have its name set
to server-deploy.wsdd and must be placed in the archive’s root directory.

2. The WSDL/GWSDL file must be placed inside a directory named schema
which lives in the archive’s root. It is also possible to place this file inside a

Important: All the Java files must be placed in directories that can be reached
by the javac compiler. This can be accomplished either by inserting the root
source directory into the CLASSPATH environment variable or by running the
compiler from this directory.
 Chapter 4. Grid services development 45

http://www-unix.globus.org/toolkit/documentation.html

sub-directory of the schema directory, as long as its location is correctly
specified in the WSDD file.

3. There is no specific rule for placing the remaining files but it is a good
organizational principle to keep the implementation files separate from the
automatically generated stubs so that they can be easily redistributed to the
clients. Therefore, one option is:

a. Place all the stubs in a JAR file and place this file in the archive’s root.

b. Place all the implementing files in a separate JAR file and place this file in
the archive’s root as well.

4.2.5 Deploying and undeploying
GT3 Web services use the same WSDD files as are used for Web services
deployment. The structure of a WSDD file for GT3 remains unchanged from the
Axis version.

The process for deploying and/or undeploying a grid service in a grid container
may vary from container to container. This process consists of copying the
service’s files into locations where the container can find them when they are
required and from where they can be removed when the service is undeployed. It
also processes the WSDD files so that the container’s configurations are set up
to include or exclude this service into/from the set of all active services for that
container.

Deploying a service into GT3 is very straightforward once it can be done by the
ant tool from the GT3 root directory.

Similarly, to undeploy a grid service from the GT3 container, run the following
command from the GT3 root directory:

Tip: The name of the JAR files where the stubs and implementation files are
placed does not matter since they will be automatically scanned and loaded
into memory by the grid container. However, you are advised to give them
meaningful names, such as <service-name>-stubs.jar for the stubs JAR file
and <service-name>-impl.jar for the implementation JAR file.

ant deploy -Dgar.name=<fully qualified GAR file pathname>

ant undeploy -Dgar.id=<service name>
46 Grid Services Programming and Application Enablement

4.2.6 Testing
After deploying a grid service into a container, there are basically two ways to
test it: using the Service Browser or developing a client code.

The simplest and quickest is by means of the Service Browser tool, which is
discussed in Appendix F, “Service Browser” on page 253.

The second, more laborious, but most comprehensive way, is to implement a
simple client that tests each of its exported methods in a more specific fashion. In
this case, such a client should get a reference to a service factory, create its own
instance and issue calls to each of its methods in a convenient way.

The sample code shown in Figure 4-1 on page 48 can be used as a starting point
for creating such clients. It includes all the necessary operations for creating a
service instance and issuing method calls to this instance. In order to run the
client, all the required libraries (JAR files) must be included in the CLASSPATH
environment variable.

Note that this client is meant for a non-secure grid server, which means that no
certificates are required.
 Chapter 4. Grid services development 47

Figure 4-1 Sample grid client code skeleton used for testing

package <my client package>;

import <my service’s stubs package>.<my service’s port-type class>;
import <my service’s stubs package>.<my service’s grid locator class>;
import org.globus.ogsa.utils.GridServiceFactory;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.gridforum.ogsi.GridService;
import org.gridforum.ogsi.OGSIServiceGridLocator;
import java.net.URL;

public class SampleClient {
public static void main(String[] args) {

try {
// Set the service address
String addr = “http://<grid server>/<service location>“;
URL GSH = new java.net.URL(addr);

// Get a reference to the service Factory
OGSIServiceGridLocator gl = new OGSIServiceGridLocator();
Factory fp = gl.getFactoryPort(GSH);
GridServiceFactory gsf = new GridServiceFactory(fp);

// Create a new instance of the service
LocatorType lt = gsf.createService();

// Get a reference to the service port-type.
<service name>GridLocator sgl= new <service name>Locator();
<service name>PortType spt= sgl.get<service name>(lt);

// Invoke remote methods
spt.<method call>

// Destroy the service instance
GridService gs = gl.getGridServicePort(lt);
gs.destroy();

} catch(Exception e) {
System.err.println("There was an error executing the client");
e.printStackTrace();

}
}

}

48 Grid Services Programming and Application Enablement

4.3 Grid services development sample
Following previous concepts and development steps, this section presents a
simple but complete grid service.

The sample grid service to be developed in this chapter is a distributed
client-server application written in Java. The server returns the “message of the
day” to any client's invocation.

This is a direct extension of the Web service developed in Appendix B, “Web
service development” on page 213, but in addition, it keeps track of the
messages already sent to each of the clients, providing a new message for every
method call, regardless of the current date.

Although the applications are so similar, and that grid has taken much in the way
of Web services knowledge and some tools, be careful, because grid
development requires some different procedures.

The development follows the methodology and the language is Java.

4.3.1 Essentials
The simple grid service may be developed with the use of the following elements:

1. A Java development kit, with a Java compiler and virtual machine.

2. The JAR files located inside the lib/ directory of any GT3 installation.

3. The JAR pathnames included in he CLASSPATH environment variable.

4. The contents of the schema/ directory of any GT3 installation.

As you can see, a GT3 installation is not required, only its libraries. A copy of all
the required files should be available so that the tools for generating WSDLs and
stubs can be accessed.

4.3.2 Specifying: defining the service’s functionality
The service’s functionality for this sample is presented in Figure 4-2 on page 50.
 Chapter 4. Grid services development 49

Figure 4-2 Message of the day service interface

As in every Java project, the Java file where this interface is declared must be
named MOTDSI.java and must be placed in a directory structure that reproduces
the package structure declared in the very beginning of the file. So, you are
expected to create a directory com/ that houses the sub-directory ibm/ that
houses the sub-directory itso/ and so on until the sub-directory common/, where
the file is finally placed.

4.3.3 Coding sample
This sample considers that the first specification is done in Java. Thus, it is
necessary to convert the Java code into WSDL code and into GWSDL code.

The WSDL for grid services

In order to compile the Java service interface, we chose to compile all the
classes from the package /com directory, for the sake of simplicity since we will
not have to deal with environment variables configuration issues, which may vary
from platform to platform.

Thus, from the directory that houses the com/ sub-directory, issue:

This will generate the compiled MOTDSI.class file inside the same directory
where MOTDSI.java is.

At this point, a copy of the directory <OGSA location>/schema/, along with all its
contents, should be made in the same directory where the sub-directory com/
lives. Additionally, a sub-directory motd/ should be manually created inside this
schema/ directory.

package com.ibm.itso.grid.gt3.motd.common;

/**
 * This interface defines the sample service functionality.
 * It defines a single method from where callers can get text messages
 */
public interface MOTDSI
{
 public String getMOTD();
}

javac com/ibm/itso/grid/gt3/motd/common/MOTDSI.java
50 Grid Services Programming and Application Enablement

Thereafter, the WSDL file can be generated by issuing:

This command is basically the same as was issued for the sample Web service.
Further information about each of its command line parameters can be found in
Appendix B, “Web service development” on page 213.

After that, move to the directory schema/motd/, where the WSDL file has just
been generated, and issue:

This command, which is provided as an OGSA tool by the Globus Alliance,
transforms the WSDL file into a decorated WSDL file, actually the GWSDL file,
with all the additional information required by grid services. Remember that this
is necessary in the WSDL 1.1 specification and may not be necessary anymore
in the new version WSDL 1.2 if it includes all grid requests.

The Java code: stubs for grid services

Having the decorated WSDL file, we are able to generate all the service stubs.
This is done by issuing:

This command creates the new directory structure stubs/ in the common/
directory and places all the stub files inside it.

java org.apache.axis.wsdl.Java2WSDL -S MOTD -P MOTDPortType -o
schema/motd/MOTD.wsdl -l http://localhost/ogsa/services/MOTD -y WRAPPED -u
LITERAL -n http://common.motd.gt3.grid.itso.ibm.com/stubs
com.ibm.itso.grid.gt3.motd.common.MOTDSI

Important: If you are issuing this command in a machine where the GT3 is
installed, then you will not have to deal with CLASSPATH configuration since it
may already have been properly set for running GT3. However, if you are
issuing the command in a non-GT3 machine, you will have to copy all the
required JAR files to your local system and place them in your CLASSPATH
environment variable. The required JAR files are in the <OGSA location>/lib
directory.

java org.globus.ogsa.tools.wsdl.DecorateWSDL ../../ogsi/ogsi_bindings.wsdl
MOTD.wsdl

java org.globus.ogsa.tools.wsdl.GSDL2Java schema/motd/MOTD.wsdl
 Chapter 4. Grid services development 51

4.3.4 Building the sample: service implementation
Once the stubs are generated, it is possible to write both service and client
implementations. Figure 4-3 shows the code that implements our sample grid
service.

Figure 4-3 Grid service sample code

As can be seen, this code looks fairly similar to the Web service implementation
code without the grid presented in Appendix B, “Web service development” on
page 213. The main difference is that each instance of this grid service will have
its own state. Here, the state is simply represented by the local attribute
nextMessage, which points to the index of the next message to be delivered.

The service implementation code can be compiled by issuing the following
command from the directory where the com/ sub-directory has been placed.

package com.ibm.itso.grid.gt3.motd.server;
import com.ibm.itso.grid.gt3.motd.common.stubs.MOTDPortType;
import org.globus.ogsa.impl.ogsi.GridServiceImpl;
import java.rmi.RemoteException;

/**
 * This class implements a grid service that provides text
 * messages to its clients from a pre-defined list of messages.
 * Its main difference from a web-service is that it.s statefull,
 * as it keeps track of the last message that has
 * been delivered to each of the clients.
 */
public class SimpleServer extends GridServiceImpl implements MOTDPortType {

private int nextMessage = 0;
String motds[] = {<fill in message strings here>};

public SimpleServer() {
super("MOTD Constructor");

}

public String getMOTD() throws RemoteException {
String motd = motds[nextMessage];
nextMessage++;
nextMessage = (nextMessage) % 10;
return motd;

}
}

javac com/ibm/itso/grid/gt3/motd/server/SimpleServer.java
52 Grid Services Programming and Application Enablement

Then the following command compiles all the stub classes:

4.3.5 Packaging the sample
Once all the service classes have been compiled, they should be packaged.

To group all the stub files in a single JAR package, issue:

Similarly, to create a JAR file containing the service implementation class, issue:

Now we have everything we need to create the GAR file. This can be
accomplished by issuing the following command:

This command creates the motd.gar archive with the required JAR files, the
service-deploy.wsdl and service-undeploy.wsdd and the MOTD.wsdl file along
with its directory path.

4.3.6 Deploying the sample
In this section, the service will be deployed. The undeploy method will also be
shown.

The WSDD Deployment Descriptor file

Now we can analyze server-deploy.wsdd and server-undeploy.wsdd files,
generated by the GSDL2Java command and already packaged. For our sample
grid service, their contents are rather standard as you can see in Figure 4-4 on
page 54 and Figure 4-5 on page 54, respectively.

javac com/ibm/itso/grid/gt3/motd/common/stubs/*.java

jar cvf motd_stubs.jar com/ibm/itso/grid/gt3/motd/common/stubs/*.class

jar cvf motd_impl.jar com/ibm/itso/grid/gt3/motd/server/*.class

jar cvf motd.gar motd_impl.jar motd_stubs.jar server-deploy.wsdd
server-undeploy.wsdd schema/
 Chapter 4. Grid services development 53

Figure 4-4 Grid service deployment descriptor

Figure 4-5 Grid service undeployment descriptor

<?xml version="1.0"?>
<deployment name="defaultServerConfig"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="MOTD/MOTDFactory" provider="Handler" style="wrapped">
<parameter name="name" value="MOTD Factory"/>
<parameter name="instance-name" value="MOTD Instance"/>
<parameter name="instance-schemaPath" value="schema/motd/MOTD.wsdl"/>
<parameter name="instance-ClassName"

value="com.ibm.itso.grid.gt3.motd.MOTD.MOTDPortType"/>
<parameter name="instance-baseClassName"

value="com.ibm.itso.grid.gt3.motd.server.SimpleServer"/>

<!-- Start common parameters -->
<parameter name="allowedMethods" value="*"/>
<parameter name="persistent" value="true"/>
<parameter name="className" value="org.gridforum.ogsi.Factory"/>
<parameter name="baseClassName"

value="org.globus.ogsa.impl.ogsi.PersistentGridServiceImpl"/>
<parameter name="schemaPath"

value="schema/ogsi/ogsi_factory_service.wsdl"/>
<parameter name="handlerClass"

value="org.globus.ogsa.handlers.RPCURIProvider"/>
<parameter name="factoryCallback"

 value="org.globus.ogsa.impl.ogsi.DynamicFactoryCallbackImpl"/>
<parameter name="operationProviders"

value="org.globus.ogsa.impl.ogsi.FactoryProvider"/>
</service>

</deployment>

<?xml version="1.0" encoding="UTF-8" ?>
<undeployment name="defaultServerConfig”

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="MOTD/MOTDFactory" provider="Handler" style="wrapped" />

</undeployment>
54 Grid Services Programming and Application Enablement

Deploying the service
Finally, the service can be deployed to the GT3 container by issuing the following
command from the GT3 root directory:

This command places every file in its proper directory.

4.3.7 Testing sample
For this service to be tested, we developed a simple client that creates a service
instance and performs a number of calls to the service exported method, as
discussed in 4.2.6, “Testing” on page 47.

The client code can be derived from the standard code presented in Figure 4-1
on page 48, resulting in the code shown in Figure 4-6 on page 56.

ant deploy -Dgar.name=<fully qualified GAR path>/motd.gar
 Chapter 4. Grid services development 55

Figure 4-6 Grid client code

package com.ibm.itso.grid.gt3.motd.client;

import com.ibm.itso.grid.gt3.motd.MOTD.MOTDPortType;
import com.ibm.itso.grid.gt3.motd.MOTD.MOTDServiceGridLocator;
import org.globus.ogsa.utils.GridServiceFactory;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.gridforum.ogsi.GridService;
import org.gridforum.ogsi.OGSIServiceGridLocator;
import java.io.DataInputStream;
import java.net.URL;

public class SimpleClient {
public static void main(String[] args) {

try {
// Read the service address in first argument
URL GSH = new java.net.URL(args[0]);

// Get a reference to the service Factory
OGSIServiceGridLocator gl = new OGSIServiceGridLocator();
Factory fp = gl.getFactoryPort(GSH);
GridServiceFactory gsf = new GridServiceFactory(fp);

// Create a new instance of the service
LocatorType lt = gsf.createService();

// Get a reference to the service port-type.
MOTDServiceGridLocator sgl = new MOTDServiceGridLocator();
MOTDPortType spt = sgl.getMOTDService(lt);

for (int i=0; i<15; i++) {
// Invoke remote method
System.out.println(spt.getMOTD());
System.in.read();

};

// Destroy the service instance
GridService gs = gl.getGridServicePort(lt);
gs.destroy();

} catch(Exception e) {
System.err.println("There was an error executing the client");
e.printStackTrace();

}
}

}

56 Grid Services Programming and Application Enablement

After creating its service instance, this client keeps calling the service’s method
as long as the Enter key is pressed between two iterations. This allows for the
verification of the stateful nature of the service instances, since multiple clients
running at the same time may call the service’s method in any arbitrary order.

This code may be compiled by issuing the following command:

It may be started by issuing the following command:

If several clients are started simultaneously, it is possible to verify that each one
has its own grid service context, which means that the execution of a client does
not interfere with the order according to which messages are delivered to another
client.

In spite of the simplicity of this example, the steps followed for the development
of our sample grid service may remain unchanged regardless of the complexity
of the grid service being developed.

javac com/ibm/itso/grid/gt3/motd/client/SimpleClient.java

java com.ibm.itso.grid.gt3.motd.client.SimpleClient
http://<servername>:8080/ogsa/services/MOTD/MOTDFactory

Important: Before executing the client, the grid service container where our
service was deployed must be running. In GT3, this can be accomplished by
issuing the globus-start-container command from the <OGSA location>
directory.
 Chapter 4. Grid services development 57

58 Grid Services Programming and Application Enablement

Chapter 5. Major features of grid
services

The preceding chapters introduced entry-level concepts and a basic approach to
developing grid services. The focus of this chapter is to incrementally build on
that base knowledge by gradually introducing the topics that demonstrate the
OGSI and GT3 features of grid services and show how these grid service
features address the shortcomings of the Web services model.

5

© Copyright IBM Corp. 2004. All rights reserved. 59

5.1 Introduction
Grid applications have some special features, which were mentioned in
Chapter 3, “Open Grid Services Architecture” on page 21. This chapter will detail
the most important features of grid programming: Factory, Service Data
Elements, Life cycle and Notification.

5.2 Factory
Grid services implement a factory approach which is similar to the factory
concept in object-oriented design and object-oriented programming in Java. A
factory is a persistent service which creates instances with which clients can
interact. In object-oriented programming terms, a factory is used to create
instances of a class. The factory is also used to isolate the creation of objects of
a particular class into a single place so that new features or functions can be
added without widespread code changes.

In a grid context, a factory creates service instances and has a registry to keep
track of those instances and to enable service discovery by clients or other
services.

Clients typically first locate the factory, and then request the creation of a service
instance. On request, a factory creates an instance of a grid service and returns
a Grid Service Handle (GSH) and a Grid Service Reference (GSR) to the client.

The GSH is a unique identifier and the client uses it to communicate with the
service instance. No further communication from the client necessitates the
factory and communication is established directly with the service instance.

The service instance maintains state data relative to the client which invoked it.
Typically, clients will have their own grid service instance with which to interact
but it is possible for multiple clients to interact with the same grid service
instance. The instance is destroyed when the client(s) no longer has a need for it.
Optionally, a termination time can be specified. When the grid service has been
idle for the length of time specified by the parameter termination time, it is
destroyed. When it is destroyed, it frees any resources it obtained during its
lifetime.

A typical client scenario includes the following steps:

1. Client discovers a factory by querying the registry service
2. Client calls a factory operation to create an instance of a grid service
3. Factory creates a new instance of the grid service
4. Factory returns the GSH of the new grid instance to the client
60 Grid Services Programming and Application Enablement

5. Client and service interact as result of the initial call

The example in Figure 5-1 illustrates the concept of a client requesting an
instance from the service factory. The service factory creates an instance and
returns the GSH or URL of the service instance to the client. The client uses this
GSH to communicate directly with the service instance.

Figure 5-1 Client requests an instance from the factory

5.3 Service Data Elements
As noted in the preceding sections and with the previous examples, an important
differentiation between grid services and Web services is the ability of a grid
service to maintain state information. Another important differentiation is that grid
services are transient. Whereas a Web service is persistent and all clients
interact with that Web service, a grid service factory creates an instance for each
client to interact with. The persistent state data associated with that grid service
instance is relative to the client that invoked the service. This allows for stateful
interactions between the client and the service.

The service data is a structured collection of information that is associated with
an instance of a grid service to expose a grid service instance’s state data to
service requestors. The service data must be easy to query, so that grid services
can be classified and indexed according to their service characteristics.
 Chapter 5. Major features of grid services 61

Each instance of a grid service has an associated service data set which
contains Service Data Elements (SDE); these can be of different types. However,
Service Data Elements of the same type always contain the same type of
information.

Every grid service instance has standard SDEs by default. Consider the scenario
where a service data set has two service data types. One service data type (type
A) is composed of service data that describes resource information such as the
architecture, speed, operating system level and available disk space information.
The second service data type (type B) contains service data that describes
service in terms of quality of service and degree of precision. All service data
sets which contain service data type B will contain the same data elements
(quality of service and degree of precision), however, the value associated with
those Service Data Elements will be unique to the particular grid service
instance. All service data sets which contain service data type A will contain the
Service Data Elements associated with that resource (architecture, speed,
operating system level and available disk space information).

Each Service Data Element must have a locally unique name and can contain
name-value pairs, concrete Java types, user-defined types, or any combination
thereof.

SDEs can be static or dynamic. Static service data is defined as part of the
service interface definition. Dynamic service data is added to the service
instance. To use dynamic service data, clients must be able to get a list of
Service Data Elements at runtime. This is accomplished by using the
findServiceData method defined in the grid service interface. Example 5-1
returns all Service Data Elements for an individual service instance. Notice that
the only parameter is the GSH (or the URL of the service instance).

Example 5-1 findServiceData

findServiceData
http://192.168.0.102:12080/ogsa/services/base/index/IndexFactoryService
produces the following output:
<ns1:serviceDataSet xsi:type="ns1:serviceDataSet">
<ns1:serviceData xsi:type="ns1:serviceData"
ns1:availableUntil="2002-12-15T16:13:01.701Z"
ns1:goodFrom="2002-12-14T16:13:01.701Z"
ns1:goodUntil="2002-12-15T16:13:01.701Z"
ns1:name="ns2:NotifiableServiceDataNames"
xmlns:ns2="http://ogsa.gridforum.org/notification/notification_source/
definitions"/>
.
.
.

62 Grid Services Programming and Application Enablement

<ns1:serviceData xsi:type="ns1:serviceData"
ns1:availableUntil="2002-12-15T16:13:01.700Z"
ns1:goodFrom="2002-12-14T16:13:01.700Z"
ns1:goodUntil="2002-12-15T16:13:01.700Z" ns1:name="ns3:GridServiceHandles"
xmlns:ns2="http://ogsa.gridforum.org/notification/notification_source/
definitions"
xmlns:ns3="http://ogsa.gridforum.org/service/grid_service/definitions"
xmlns:ns4="http://ogsa.gridforum.org/factory/factory/definitions"
xmlns:ns6="http://ogsa.gridforum.org/registry/registration/definitions"
>
<ns1:serviceHandle
xsi:type="ns1:HandleType">http://128.9.72.46:8080/ogsa/services/base/
index/IndexFactoryService</ns1:serviceHandle>
</ns1:serviceData>
</ns1:serviceDataSet>

Example 5-1 on page 62 returns all Service Data Elements for an individual
service instance. In order to return a specific Service Data Element for a
particular service instance, the findServiceData command must include GSH (or
URL of the service instance) along with the Service Data Element name within
the instance that is being requested. See Example 5-2 for details on returning a
specific SDE from the service instance.

Example 5-2 findServiceData query to locate the gridServiceHandle

findServiceData
http://128.9.72.46:8080/ogsa/services/base/index/IndexFactoryService
GridServiceHandles
produces the following output:
<ns1:serviceData xsi:type="ns1:serviceData"
ns1:availableUntil="2002-12-15T16:13:01.700Z"
ns1:goodFrom="2002-12-14T16:13:01.700Z"
ns1:goodUntil="2002-12-15T16:13:01.700Z" ns1:name="ns2:GridServiceHandles"
xmlns:ns2="http://ogsa.gridforum.org/service/grid_service/definitions">
<ns1:serviceHandle
xsi:type="ns1:HandleType">http://128.9.72.46:8080/ogsa/services/base/
index/IndexFactoryService</ns1:serviceHandle>
</ns1:serviceData>

A developer can include SDEs in a grid service. In addition to user-defined
service data, each grid service has a set of common service data. The service
data depends on the grid service port type which is implemented. The common
service data is populated by the Globus core framework. The common service
data describes characteristics of the grid service such as the GSH of the
instance. As explained in 3.3, “Open Grid Services Infrastructure (OGSI)” on
page 28, the following Service Data Elements are part of the GridService port
type:
 Chapter 5. Major features of grid services 63

� gridServiceHandle
� factoryLocator
� terminationTime
� serviceDataName
� interfaces
� gridServiceReference
� findServiceDataExtensibility
� setServiceDataExtensibility

Java developers wishing to implement service data might think that the SDEs
need to be added to the grid service interface. It is recommended to have a
separate Java class for each service data type. In this case, each Service Data
Element is an instance of one of these Java classes. Each attribute associated
with service data should have the appropriate access methods. These are
typically called getters and setters. This portion of code can be generated from a
service data description which is specified in an XML schema document, which is
imported into the GWSDL description of the grid service. Example 5-3
demonstrates this.

Example 5-3 GWSDL document with service data description

...
<complexType name="MyDataType">

<sequence>
<element name="myValue" type="int"/>
<element name="myOperation" type="string"/>

</sequence>
</complexType>
...

5.4 Life cycle
Most entities have a life cycle. This typically refers to the states between the
object’s creation and destruction. Life cycle management is very important,
especially in a robust environment where services should be capable of
resuming operations in the event of a server or container restart. In order to be
capable of resuming operations after a container restart, services must support
checkpoints and persisting of its state information. The ability to retrieve the
previous state and continue execution or processing from that state forward must
also be supported. In other words, the service should be able to continue
operations after the container has been restarted with the same state and values
that it had when the container was stopped. To support this, the service must
manage itself during critical points in its life cycle. A grid service should save the
state of any internal values prior to being destroyed and reload the previously
64 Grid Services Programming and Application Enablement

saved state during creation. The Globus Toolkit and the IBM Grid Toolbox
provide tools to aid in the life cycle management of grid services. These tools
include what are known as callback methods. These callback methods are called
or invoked during critical points of a grid services life cycle.

These critical points during the grid service life cycle include:

� preCreate - called when a grid service starts the creation process, prior to
loading configuration data

� postCreate - called when a grid service has been created and loaded its
configuration data

� activate - called when a grid service is activated or loaded into memory space

� deactivate - called before a grid service is deactivated or paged out of
memory

� predestroy - called before a grid service is destroyed

Callbacks methods can be implemented in a grid service by implementing the
GridServiceCallback interface. The following code segment (Example 5-4)
illustrates implementing callback methods.

Example 5-4 Callback method

import org.globus.ogsa.GridServiceCallback;

public class myClass implements GridServiceCallback {

public void preDestroy(GridContext context) throws GridServiceException {

logger.info("Grid Service destroy method invoked, saving state data…");
// save the internal state of the service here

}

As with most programming concepts, there are numerous ways to implement this
technology. Similar to the delegation approach in the preceding section, the
container can handle some of this functionality by strategically placing
statements in the deployment descriptor to enable the life cycle monitor. The life
cycle monitor is a class which implements the ServiceLifecycleMonitor interface.
The ServiceLifecycleMonitor interface contains callback methods which are
called at specific points in a grid service's life cycle. The following example
illustrates concepts that were previously presented during our discussion of
persisting a service so that it can resume operations after a container restart. As
mentioned previously, to support this requirement, the service must log its
internal state prior to being destroyed. The service must reload the previously
saved state during object creation and be capable of resuming operations from
 Chapter 5. Major features of grid services 65

that point. See Example 5-5 for details on implementing the create and
preDestroy callback methods.

Example 5-5 Implementing callback methods

Package com.ibm.itso.gt3.lifecycle.impl;

import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.ServiceLifeCycleMonitor;
import org.globus.ogsa.GridContext;
import org.apache.commons.logging.log;
import org.apache.commons.logging.logFactory;

public class myClass implements ServiceLifecycleMonitor {

static Log logger = LogFactory.getLog(myClass.class.getName());

public create(GridContext context) throws GridServiceException {

logger.info("myClass instance is being created");
// check for saved state and retrieve if appropriate

}

public preDestroy(GridContext context) throws GridServiceException {
logger.info("myClass instance is being destroyed");
// saved the state of this instance

}

Remember that to view the log output, the following files must be updated
accordingly:

� ogsiLogging.properties
� ogsilogging_parm.properties

If the grid service does not implement the GridServiceCallback interface, then
the other approach to implementing callback methods is to update the
deployment descriptor so that the container calls certain life cycle monitors when
specific events take place. Life cycle parameters can be specified in the
deployment descriptor. For example, the instance-deactivation parameter allows
the developer to specify the amount of time in milliseconds that a particular
instance can be idle prior to deactivation. In the following example, the instance
will be deactivated after it has been idle for 15 seconds. This property is
important since services are deactivated by default, but once activated, they are
active indefinitely. Developers or application architects should consider how long
a service instance should remain active if it is not being used. If this is not
considered, additional system resources are being consumed. Deactivation will
free system resources and when the instance is invoked again, it will become
66 Grid Services Programming and Application Enablement

active. Example 5-6 illustrates instance deactivation declared in the deployment
descriptor.

Example 5-6 Instance deactivation

<parameter name="instance-deactivation" value="15000"/>

5.5 Notifications
Notifications are a useful mechanism for tracking changes to service data. A
party interested in a particular Service Data Element registers to be notified if
that value changes. The interested party, to which the notification is sent, is
called the notification sink. The service containing the Service Data Element of
interest and which generates the notification to interested parties or subscribers
is called the notification source.

Figure 5-2 on page 68 illustrates the notification subscription flow of events. An
application or grid service is interested in a particular Service Data Element of
another grid service (notification source). The interested party (notification sink)
generates a notification subscription which includes a subscription expression
that describes which Service Data Element(s) and associated changes are of
interest. The notification subscription is sent from the interested party
(notification sink) to the grid service that contains the Service Data Element of
interest. In other words, the notification sink calls the subscribe operation on the
notification source. Upon receipt of the notification subscription, the grid service
(notification source) creates a subscription service to manage the subscription
and its associated information. The notification source returns the handle of the
subscription service to the requester (notification sink). The handle is used by the
notification sink to manage the subscription lifetime. Notification messages are
then sent to the notification sink when the Service Data Element, specified in the
notification subscription, changes. Notifications continue for the lifetime of the
notification subscription. The notification sink and the subscription service can
interact to perform lifetime management tasks.
 Chapter 5. Major features of grid services 67

Figure 5-2 Notification subscription flow

1. An interested service subscribes to be notified if a Service Data Element
changes. The interested service that will be notified is called the notification
sink. The grid service that received the notification subscription is called the
notification source.

2. The notification source creates a subscription manager instance.

3. The notification source returns the handle of the subscription manager
instance to the notification sink.

4. The notification sink can use the subscription manager handle to manage the
subscription lifetime.

5. When the condition specified in the notification subscription is met, a
notification message is sent to the notification sink.

The notification framework defines the following components:

1. Subscription request

A message sent to the notification source containing the location of the
notification sink to which notification messages are to be sent, and an initial
lifetime for the subscription source. A subscription request causes the
creation of a grid service instance called a subscription.

2. Subscription expression

An XML document that describes the rules and format of the notification
message, such as the notification destination, and when it should be sent.

Application
or Grid Service

Notification
Sink

Grid Service

Notification
Source

3) Returns Subscription Manager Handle

5) Notification Message

Subscription
Management Grid Service

Subscription
Information

4) Manager Subscription Lifetime

2) Creates Subscription Manager

1) Notification Subscription
68 Grid Services Programming and Application Enablement

3. Subscription manager

A subscription manager instance is created to manage the subscription
information.

4. Notification source

A grid service instance that sends notifications.

5. Notification message

An actual callback notification message. Notifications can also be sent to post
service data value modifications. So, in this case, notifications use a service
data concept behind the scenes. When a service instance wants to receive a
notification associated to a particular SDE, the service needs to be
subscribed in order to be notified of subsequent changes to the target
instance’s service data.

6. Notification sink

A grid service instance that receives notifications.

The developer may want to execute a method based on the state of the service
or based on the value or contents of a service's Service Data Element. This can
be accomplished by subscribing to the service and informing it that this client
would like to be notified when a certain condition is met. For example, a user of a
service may want to be notified if the file system on the node where the service is
running no longer has sufficient space left to submit jobs, as seen in Figure 5-3
on page 70. The job submission may be set up in such a way as to run jobs
continuously until there is insufficient disk space left to store the output of the job.
This scenario is probably not a real world use of notification in grid services,
since there are standard products that monitor the infrastructure, but it does
illustrate the concepts. A more common example might be one where we ask a
bank service to notify us if the account balance reaches a level that is below a
certain number of dollars.
 Chapter 5. Major features of grid services 69

Figure 5-3 Notification if no sufficient space left to submit jobs

There are two basic implementation approaches to notifications. In the first case,
called push notification, a client subscribes to be notified when a condition is met.
When that condition is met, a notification is sent to the subscriber which also
includes information about the condition which was met. In many cases, the
notification is sent along with the value of the Service Data Element which was
subscribed to, as shown in Figure 5-4.

Figure 5-4 Push notification

It is quite common to subscribe to Service Data Elements and request to be
notified when the value changes. However, not all clients who subscribe to the
notification need to know the new value of the Service Data Element. In some
cases, the client may just need to know that the value has changed and not
necessarily what the current value is. For this scenario, another kind of
notification, called pull notification, is more efficient. In the pull notification
approach, the subscriber is notified of the change of state or value of the Service
Data Element, but the new or updated value of the Service Data Element is not
sent with the service notification. Subscribers who wish to know the current value
70 Grid Services Programming and Application Enablement

of the Service Data Element can make another call to the service requesting the
current value of the Service Data Element (pull). This approach, as shown in
Figure 5-5, is typically used when clients need to know that a change occurred
but not necessarily the new value of the Service Data Element.

Figure 5-5 Notification and pull SDE

Multiple clients can subscribe to be notified in the event of a change of value in a
Service Data Element. The service, in this case, is called the notification source.
The subscribers or clients are called the notification sink. Multiple clients could
subscribe to a service's Service Data Element as a way to share data.
Notifications are handled by the subscription management service. The service
or notification source notifies the subscription management service that the value
has changed. The subscription management service maintains a list of clients or
other services which are interested in the Service Data Element. The
subscription management service then notifies each client or notification sink
which has registered for notification of that Service Data Element. Note that
when implementing notifications, the service should be non-transient and not a
service that is created by a client to do some work, then be destroyed.
 Chapter 5. Major features of grid services 71

72 Grid Services Programming and Application Enablement

Chapter 6. Project and design of grid
applications

This chapter provides an overview of the issues to consider for any grid
application. The approach to build a grid-enabled application encompasses a
wide range of aspects of problem analysis, application architecture, and design.
Some of these items may not apply for every project. Some aspects are familiar
from other application development projects and are not elaborated upon in great
detail. Others, which are new aspects due to the nature of a grid application, are
examined in greater detail.

6

© Copyright IBM Corp. 2004. All rights reserved. 73

6.1 Use existing code or build from scratch?
We start our development by examining where the project is starting from and
then perform a qualification analysis of the system to see if it makes sense to put
it into a grid at all. Once we are satisfied, we move into the standard software
project phases of requirements gathering, design, coding, testing and deploying.

The developer is usually in one of two project kick-off situations:

� Writing a new grid application
� Writing a grid “wrapper” around an existing running system

While most developers would like to create new, pure systems to have the most
control over design and development, that is almost never the case. There is an
enormous number of existing systems, which usually evolve over time within an
organization. We briefly discuss the issues around a grid project’s starting point.

6.1.1 Developing a grid application from scratch
A newly specified grid system gives the developers a great deal of control:

� Freedom to choose programming language and tools
� Freedom to choose best-of-breed technologies and toolkits
� Blank sheet of paper for all design aspects

Developers in this situation will be able to easily follow the development steps
outlined in this redbook, but they should remember that no system is an island
and there will usually be constraints applied to their design, regardless of its
nature as a grid application:

� Must handle connections to existing databases, message queues, network
sockets

� Must read and write existing data formats

� Must comply with local security policy

6.1.2 Grid enabling existing code
Life is slightly more complicated for those developers whose project is to place
an existing system into a grid environment. This task is generally referred to as
“wrappering” the existing code and involves the following issues. These are
meant to be high-level views of handling issues in existing code, but the next
section serves as a checklist of items which can block successful development of
a grid service. If difficulties arise in this section about the existing codebase, then
the system has a strong chance of failing the qualification criteria in the next
section.
74 Grid Services Programming and Application Enablement

Existing code is written in Java
This wrappering is easy to perform if the existing system is written in Java, since
it requires writing a new Java class which exposes one or more public methods.
As you will see later in the document, the Operation Provider method was
designed for just this situation. The methods in the new class massage the
parameters and perform whatever processing is necessary to call into the
existing system’s object structure and return any results.

Existing code is not written in Java
If the existing system is not written in Java, Java Native Interface (JNI)
techniques can be used, but there is an immediate restriction on the operating
system platform the grid service can be deployed into. A service calling directly
into a Windows DLL can only be deployed onto Windows machines; Linux and
other Unix platforms have the same restriction for their shared library files. This is
not a big problem if you have a homogeneous grid, but the nature of most grids is
a heterogeneous evolution over time and you will be limiting the deployment
potential of your grid service.

Existing code is small and encapsulated
This is the best kind of existing code situation, since it is possible to build a
single-task, well-defined service and deploy it around a grid. This service is
typically a CPU-intensive process that accepts some input, performs some
processing and returns the results when done.

Existing code is large and/or has multiple connections
If your existing code has these characteristics, then its candidacy as a grid
service is already in doubt. Your grid nodes must be very powerful to handle
large and complex tasks within the performance metrics defined by the
requirements. If the code makes multiple connections to other systems and/or
transfers a lot of data, the service is not going to parallelize well and you will end
up with one or more bottlenecks, negating the benefits of running in a grid. It is
critical to attempt a refactoring of the existing code to modularize it and remove
as many interdependencies as possible, until you end up with a small and
encapsulated solution.

6.2 Qualify the application
It is important to first qualify an application for its suitability for running on a grid.
Not all applications lend themselves to successful or cost-effective deployment
on a grid. A number of criteria may make it very difficult, require extensive work
effort, or even prohibit grid-enabling an application. We provide a criteria list for
analyzing an application. The list includes attributes of an application or its
 Chapter 6. Project and design of grid applications 75

requirements that may inhibit an application from being a good candidate for a
grid environment. The list may not be complete and depends on the local
circumstances of resources and infrastructure. A qualification scheme document
that acts as a basis for architecture and project planning for a grid application can
be found at http://developerWorks®.ibm.com/.

Some items such as temporary data spaces, data type conformity across all
nodes within the network, appropriate number of software licenses available in
the network for the grid application, higher bandwidth, or the degree of
complexity of the job flow can be solved, but have to be addressed up front in
order to create a reasonable grid application.

An application with a serial job flow can be submitted to a grid, but the benefits of
grid computing may not be realized, and the application may be adversely
affected due to grid management overhead. However, exploiting the grid and
submitting the application to more powerful remote nodes may very well provide
business value.

The following list presents the most critical items that hinder or exclude an
application from use on a grid:

1. High inter-process communication between jobs without high speed switch
connection (for example, MPI); in general, multi-threaded applications need
to be checked for their need of inter-process communication.

2. Strict job scheduling requirements depending on data provisioning by
uncontrolled data producers.

3. Unresolved obstacles to establish sufficient bandwidth on the network.

4. Strongly limiting system environment dependencies for the jobs.

5. Requirements for safe business transactions (commit and roll-back) via a grid.
At the moment, there are no standards for transaction processing on grids.

6. High interdependencies between the jobs, which expose complex job flow
management to the grid server and cause high rates of inter-process
communication.

7. Unsupported network protocols used by jobs may be prohibited to perform
their tasks due to firewall rules.

6.3 Understand the requirements
Once we understand the project’s starting point and have qualified it as
reasonable to implement as a grid service, we begin examining the project’s
requirements.
76 Grid Services Programming and Application Enablement

http://developerWorks.ibm.com/

Requirements are key to the successful design, development and deployment of
a system. As all programmers are aware, without a reasonably detailed set of
requirements, no system can ever be delivered on time, on budget and with full
functionality.

There are dozens of specific methodologies for requirements definition in use
today. This document is not going to try to convince you to use one style or
another; the important thing is for developers to use one with which they are
comfortable, the key word being *use*. Projects which are under strong time
constraints and pressure get to a point in the development cycle where the team
must has something to “show”. The rule of thumb is that most projects require
about 50% of the total effort to be spent in requirements analysis, architecture
and design before the first line of code is written. Unless you have management
that understands the key points of the software development process, you may
have to defend why there is no code running yet. In this way, you can assure
management that the project is on track and the necessary work is being done.

A methos that has been successful in the past involves defining all requirements
and their corresponding use cases in the project documentation, then have all
related parties physically sign their name to an acceptance letter. The signatories
should include the project managers, the user representatives, the business
representatives, the architects, the designers, the developers, the systems
administrators and the testers. The act of committing oneself to the acceptance
of a document by signing it will make almost every member of the project perform
a much more careful review. Once everyone has signed, it can be reasonably
assumed that the requirements meet the final system goals and there will be no
surprises or scope creep. Any substantial changes during development are
handled as Change Requests and are either accommodated by more budget
and time or are deferred until the next version.

6.3.1 Functional requirements
Functional requirements capture the intended behavior of the system, in terms of
the services the system is intended to provide. Functional requirements vary
widely depending on the operation of the system, but some examples are:

� User login
� User logoff
� Customer Data Entry and Validation
� Transaction
� Print Monthly Report
� Overnight Batch Process
� Pulling Data from Business Partner

One very common method used to determine the completeness and correctness
of a set of functional requirements is the use case. Use cases are a set of
 Chapter 6. Project and design of grid applications 77

step-by-step descriptions of process flows through a system with references to
all internal and external components which are affected. One ore more use
cases can map into a high-level requirement such as those defined above. A
simple system could get by with a handful of use cases while a complex system
could easily have hundreds or even thousands. Use cases can be used by the
test team to verify that the requirements were met. When all test cases are
successful, the system can be considered both feature complete and accurately
implemented.

Use cases are generally described in the Unified Modeling Language (UML),
defined by Grady Booch, Jim Rumbaugh and Ivar Jacobson of Rational®
Software Corporation (now IBM) and now shepherded by the Object
Management Group. In addition to Use Case diagrams, UML has additional
object-oriented design and development capabilities, including:

� Class Diagrams: class definitions and relationships to other classes. Most
UML tools can generate Java code directly from these diagrams.

� Interaction Diagrams: time sequence of objects in the system

� State Diagrams: sequences of state that an object passes through in its life
cycle

� Activity Diagrams: a special class of State Diagram

Since UML has become the predominant OO modeling methodology, there are
many products that allow architects and developers to build a full model of the
system, then generate Java code directly from the model. IBM’s Rational Rose®
family of products provides a complete suite of UML tools.

6.3.2 Non-functional requirements
Non-functional requirements define the softer goals of the project that are not
defined in use cases, such as:

� Scalability
� User interface factors
� Error handling
� Security
� Application flexibility
� Server and client platform
� External connections
� Performance
� Reliability
� System management
� Topology considerations
78 Grid Services Programming and Application Enablement

� Mixed platform environments
� File formats
� Software license considerations

Scalability
As more work is sent to a system, utilization of resources increases until the
system cannot handle any additional load. At this point, the system can fail in any
number of ways, including system crashes, lost messages, corrupted data, user
request time-outs, etc. The goal of a well-designed system is to be able to
seamlessly add more resources to the system to handle additional load, while
providing near-linear performance increases and requiring no system redesign.

The application and its server environment should be specified to allow its
deployment on nodes around the grid. In many cases, it is possible to have
multiple server instances on a single node without significant system
degradation. In fact, the goal is usually to run the nodes at a high utilization
factor, reducing the overall system cost. When a node’s resources are
exhausted, additional nodes can be added, each running multiple instances.

User interface factors
Great strides have been made over the last few years in terms of GUI interface
design, but programmers tend to build user interfaces that provide the needed
functionality and do not always think about other factors, such as:

� Overall screen layout: the GUI application window paradigm with a menu bar
across the top, a button bar underneath, a scroll bar on the right side and
perhaps across the bottom, with the application’s data content in the center is
the de facto standard across every modern operating system.

� Menus: the classic File -> Edit -> View -> ... -> Help menu structure is well
understood. Buttons: users are used to the OK, Cancel, and Help button text
and placement in dialogs.

� Accelerator keys: key combinations such as Alt-key and Ctrl-key bound to
menu items and dialog buttons allow mouseless operation of the application.
Some users find this preferable to constantly moving their hands between the
keyboard and mouse and it takes almost no effort by the developer.

� Multi-dialog “wizards”: when collecting complex or lengthy information from
the user, a sequence of dialogs can be presented. Each dialog focuses on a
single part of the whole, allowing the user to focus on that aspect before
moving on. A Previous button is essential to allow the user to back up in the
process to correct any errors before continuing.

� Context-sensitive Help: most screens and dialogs have associated help
pop-ups, but increasingly users are able to click specific items and get
fine-grained help on just that item. It is also imperative to ensure that the
 Chapter 6. Project and design of grid applications 79

provided help is actually helpful, allowing the user to understand a concept,
solve a problem or be taken to an external source for additional help.

� Internationalization: most applications will eventually have users with different
native languages and it will satisfy those users and perhaps even open
additional markets for the application if users can work in their native
language. This requires some additional thought and work in the application
for such items as:

– Dynamically loading all text strings from external language bundles,
properly merging application values as needed.

– Ensuring enough screen real estate is reserved for the longest possible
native language string; for the most common supported languages, this is
usually the German version.

– Performing quality translations of the primary language bundle. There are
companies that specialize in doing just this type of work and they are very
familiar with the technical aspects of various types of translation files.

� Disabled access: ensuring that nothing is done in the user interface that will
prevent a disabled user from effectively using the application. This can
include:

– Providing alternate text for graphical screen items such as icons, for
speech programs and braille keyboards

– Avoiding complicated multi-key sequences for hand/finger disabled users

– Providing complete functioning of the application by keyboard only for
mouse-disabled users

The overall goal is to allow users to come up to speed quickly and effectively use
the application. By following accepted UI factors and putting in a small amount of
additional effort, you will have a much happier user community.

Error handling
There is little which is more frustrating to a user than when an error occurs and is
not handled gracefully by the application. It is very easy for developers to
perform little or no error checking and error handling within the application.
Hopefully, comprehensive unit and system testing will discover these deficiencies
in the code, but beyond that, a consistent processes for catching errors in code,
logging them, and displaying them to the user should be defined. Java’s
exception mechanism makes it natural to generate and handle application errors,
but the developers need a defined process to follow to determine:

� When to throw an exception
� When to catch an exception
� When to re-throw an exception
� When to log the exception
80 Grid Services Programming and Application Enablement

� When to try to handle the exception via retries, re-interpreting data, etc.
� When and how to display an error to the user
� What option to give to the user
� What to do when the user makes a choice

Security
Security is a complex area and is therefore sometimes not handled to the proper
extent within an application. Developers must take the following into account to
provide a secure environment:

� User Authentication: users are forced to log in to the system before any
sensitive data or operations are available. Authentication involves the user
providing some sufficient number of authentication tokens, including a user
ID, a password, a smartcard, a time-dependent code such as that used by the
RSA SecurID (see http://www.rsasecurity.com/products/securid), or in
extreme cases, a biometric factor such as a retina scan or fingerprint.

� User Authorization: authorization schemes allow the user to only perform
actions they have been explicitly allowed to do. This can be handled either
programmatically in the application or by delegating the decision to an
authorization system such as from IBM’s Tivoli family of security products.

� Data encryption: sensitive information should never cross the company
firewall without being encrypted and even certain information, such as user
authentication tokens, flowing inside a company should be encrypted. Luckily,
the world of data encryption is very mature, with strong standards in place,
generally based on PKI (Public Key Infrastructure). Web browsers can
securely connect to Web servers using SSL/TLS encryption and the browser
and server automatically negotiate to an acceptable level of encryption. As a
caveat, a Web server basic authentication challenge based on sending the
browser a ‘401’ page returns the user ID and password in a Bas64 encoding
which could be very easily turned back into clear text and used by a malicious
user.

� Logging and Alerting: a guideline for developers to follow when important
events occur. Real-time or later analysis of these logs can be very useful for
detecting repeated application failure, attempted attacks on the system, etc.

Application flexibility
A system is almost never written, deployed and never touched again. When the
inevitable bug fixes, performance fixes or new feature requests come along, the
system should be structured with a view to the future so these issues can be
handled without breaking interfaces or causing significant rewrites. Items such as
these can help avoid problems in the future:

� Separation of code and data: do not bind the data type objects too tightly to
the code. This can be done by adding a layer of indirection on top of the real
 Chapter 6. Project and design of grid applications 81

http://www.rsasecurity.com/products/securid
http://www.rsasecurity.com/products/securid
http://www.rsasecurity.com/products/securid
http://www.rsasecurity.com/products/securid
http://www.rsasecurity.com/products/securid

data objects, allowing virtually the entire data structure of the application to be
changed with no change to the application code

� Definition of published interfaces: this is similar to the layer of data indirection,
but is designed to sit between distinct areas of the application code, forming
the object and method contract. The real application code can be changed
completely without having any effect on the external modules

� Plug-in design: define the system as a set of independent modules that plug
in to the base either by having an entry point class listed in a configuration file
or by dynamic discovery of classes which implement a particular application
plug-in interface. This allows new modules to be added to the base system
with no impact on the existing code base. This takes a great deal of
forethought and design, but the time is well invested if the system is expected
to grow over time.

Server and client platform
Everyone involved in the system should understand what the minimum and
recommended hardware platforms are, as well as the list of software
prerequisites so there are no surprises during development, testing and user
execution.

One common example is a Web-based system that expects the user to use a
Web browser. Generally, all is well if the Web designers develop only Web pages
that adhere to the W3C’s HTML standards. The W3C has a number of
validations suites on their system that generate reports on how closely the Web
page conforms to the standards. These suites can be found at:

http://www.w3c.org/QA/Tools/#validators

Browsers such as Mozilla, Opera, Konquerer and Safari all work quite well with
valid content. Projects go wrong when they introduce browser-specific content
into their Web pages, either by using non-standard tags or by doing JavaScript
testing of the user’s browser and providing specific content tailored to that
browser. A few years ago, this was a common issue because the browsers
(generally Netscape and Internet Explorer) had difficulty with some valid content.
These days, there is generally no reason to resort to such measures.

Unfortunately, due to the dominance of Internet Explorer, some Web developers
(as a side effect of using certain Web development tools) build their sites with
Internet Explorer-specific content, forcing users to use Internet Explorer to
successfully access the site. The lesson is: build Web sites with fully W3C
validated content and all users will be able to access the site with their choice of
browser.
82 Grid Services Programming and Application Enablement

http://www.w3c.org/QA/Tools/#validators

External connections
Almost every application requires a connection to external systems to read
and/or write data. Before development begins, it is critical to list all external
systems, along with their communication methods, data packet formats,
authentication, authorization, connection method, recovery procedure, expected
performance and human contact names. Once the staff on both ends of the
connection agree on all aspects, development can begin and it usually goes
much more smoothly than if the data exchange is defined poorly or incorrectly; in
that case, the teams will have a great deal of difficulty finishing the testing of the
systems.

Performance
When considering enabling an application to execute in a grid environment, the
performance of the grid and the performance requirements of the application
must be considered. The service requester is interested in a quality of service
that includes acceptable turnaround time. Of course, if the project is building a
grid and one or more applications that will be provided as a service on the grid,
then the service provider also has interest in maximizing the utilization and
throughput of the systems within the grid. The performance objectives of these
two perspectives are discussed below.

Resource provider's perspective
The performance objective for a grid infrastructure is to achieve maximum
utilization of the various resources within the grid to achieve maximum
throughput. The resources may include but are not limited to CPU cycles,
memory, disk space, federated databases, or application processing. Workload
balancing and preemptive scheduling may be used to achieve the performance
objectives.

Applications may be allowed to take advantage of multiple resources by dividing
the grid into smaller instances to have the work distributed throughout the grid.
The goal is to take advantage of the grid as a whole to improve the application
performance.

Service requester's perspective
The turnaround time of an application running on the grid could vary depending
on the type of grid resource used and the resource provider's quality-of-service
agreement. This assumes that the job is started immediately and that it is not
preempted by another job during execution. The same batch job may be
scheduled to run overnight when the resource demands are lower if a quick
turnaround is not required. The resource provider may charge different prices for
these two types of service.
 Chapter 6. Project and design of grid applications 83

If the application has many independent sub-jobs that can be scheduled for
parallel execution, the turnaround time could be improved appreciably by running
each sub-job on multiple grid hosts.

Turnaround time factors
There are some factors that can impact the turnaround time of applications run
on the grid resources. For example, these could include the following.

Communication delays
Network speed and network latency can have a significant impact to the
application performance if it requires communicating with another application
running on a remote machine. It is important to consider the proximity of the
communicating applications to one another and the network speed and latency.

Data access delays
The network bandwidth and speed will be the critical factors for applications that
need to access remote data. Proximity of the application to the data and the
network capacity/speed will be important considerations.

Lack of optimization of the application to the grid resource
Optimum application performance is usually achieved by proper tuning and
optimization on a particular operating system and hardware configuration. This
poses possible issues if an application is simply loaded on a new grid host and
run. This issue may be resolved if the service provider makes an arrangement
with the resource provider so that the application's optimum configuration and
resource requirements are identified ahead of time and applied when the
application is run.

Contention for resource
Resource contention is always a problem when resources are shared. If
resource contention impacts performance significantly, alternate resources may
need to be introduced. For example, if a database is the source of contention,
then introducing a replica may be an answer. In addition, the network may need
to be divided to separate the traffic to the databases. Optimum sharing of the grid
hosts may be achieved by a proper scheduling algorithm and workload
balancing. For example, the shortest job first (SJF) batch job scheduling
algorithm may provide the best turnaround time.

Network reliability
Failures in the grid resource and network can cause unforeseen delays. To
provide reliable job execution, the grid resource may apply various recovery
methods for different failures. For example, in the checkpoint-restart
environment, some amount of delay will be incurred each time a checkpoint is
taken. A much longer delay may be experienced if the server crashed and the
84 Grid Services Programming and Application Enablement

application was migrated to a new server to complete the run. In other instances,
the delay may take the entire time to recover from a failure such as network
outages.

We talk about this in the following paragraphs.

Reliability
Reliability is always an issue in computing, and the grid environment is no
exception. The best method of approaching this difficult issue is to anticipate all
possible failures and provide a means to handle them. The best reliability is to be
surprise tolerant. The grid computing infrastructure must deal with host
interruptions and network interruptions. Below are some approaches to dealing
with such interruptions.

Checkpoint-restart
While a job is running, checkpoint images are taken at regular intervals. A
checkpoint contains a snapshot of the job states. If a machine crashes or fails
during the job execution, the job can be restarted on a new machine using the
most recent checkpoint image. In this way, a long-running job that runs for
months or even years can continue to run even though computers fail
occasionally.

Persistent storage
The relevant state of each submitted job is stored in persistent storage by a grid
manager to protect against local machine failure. When the local machine is
restarted after a failure, the stored job information is retrieved. The connection to
the job manager is reestablished.

Heartbeat monitoring
In a healthy heartbeat, a probing message is sent to a process and the process
responds. If the process fails to respond, an alternate process may be probed.

The alternate process can help to determine the status of the first process, and
even restart it. However, if the alternate process also fails to respond then we
assume that either the host machine has crashed or the network has failed. In
this case, the client must wait until the communication can be reestablished.

System management
Any design will require a basic set of systems management tools to help
determine availability and performance within the grid. A design without these
tools is limited in how much support and information can be given about the
health of the grid infrastructure. Alternate networks within a grid architecture can
be dedicated to perform these functions so as not to hamper the performance of
the grid.
 Chapter 6. Project and design of grid applications 85

Topology considerations
The distributed nature of grid computing makes spanning across geographies
and organizations inevitable. As an intra-grid topology is extended to an
inter-grid topology, the complexity increases. For example, the non-functional
and operational requirements such as security, directory services, reliability, and
performance become more complex. These considerations are discussed briefly
in the following paragraphs.

Network topology
The network topology within the grid architecture can take on many different
shapes. The networking components can represent the LAN or campus
connectivity, or even WAN communication between the grid networks. The
network's responsibility is to provide adequate bandwidth for any of the grid
systems. Like many other components within the infrastructure, the networking
can be customized to provide higher levels of availability, performance, or
security.

Grid systems, are for the most part, network-intensive due to security and other
architectural limitations. For data grids in particular, which may have storage
resources spread across the enterprise network, an infrastructure that is
designed to handle a significant network load is critical to ensuring adequate
performance.

The application enablement considerations should include strategies to minimize
network communication and network latency. Assuming the application has been
designed with minimal network communication, there are a number of ways to
minimize the network latency. For example, a gigabit Ethernet LAN could be
used to support high-speed clustering or utilize high-speed Internet backbone
between remote networks.

Data topology
It would be desirable to assign executing jobs to machines nearest to the data
that these jobs require. This would reduce network traffic and possibly reduce
scalability limits.

Data requires storage space. The storage possibilities are endless within a grid
design. The storage needs to be secured, backed up, managed, and/or
replicated. Within a grid design, you want to make sure that your data is always
available to the resources that need it. Besides the issue of availability, you also
want to make sure that your data is properly secured, as you would not want
unauthorized access to sensitive data. Lastly, you want more than decent
performance for access to your data. Obviously, some of this depends on the
bandwidth and distance to the data, but you will not want any I/O problems to
slow down your grid applications. For applications that are more disk intensive,
86 Grid Services Programming and Application Enablement

or for a data grid, more emphasis can be placed on storage resources, such as
those providing higher capacity, redundancy, or fault-tolerance.

Mixed platform environments
A grid environment is a collection of heterogeneous hosts with various operating
systems and software stacks. To execute an application, the grid infrastructure
needs to know the application's prerequisites to find the matching grid host
environment. Below are some things that the grid infrastructure must be aware of
to ensure that applications can execute properly. It is equally important for the
application developer to consider these factors in order to maximize the kinds
and numbers of environments in which the application will be able to execute.

Runtime considerations
The application's runtime requirements and the grid host's runtime environments
must match. As an example, below are some considerations for Java
applications. Similar requirements may exist for applications developed in other
languages.

Java Virtual Machine (JVM)
Applications written in the Java programming language require the Java Virtual
Machine (JVM). Java applications may be sensitive to the JVM version. To
address this sensitivity, the application needs to identify the JVM version as a
prerequisite. The prerequisite may specify the required JVM version or the
minimum JVM version.

Java applications may be sensitive to the Java heap size. The Java application
needs to specify the minimum heap size as part of its prerequisite.

Java packages such as J2SE or J2EE may also need to be identified as part of
the prerequisites.

Availability of application across platforms (portability)
The executables of certain applications are platform-specific. For example, an
application written in the C or C++ programming language needs to be
recompiled on the target platform before it can be run. The application could be
pre-compiled for each platform and the resulting executables marked for a target
platform. This will increase the number of qualifying grid host environments
where the application can run. The limitation of this method will be the
cost-effectiveness of porting the application to another platform.

Awareness of OS environment
The grid is a collection of heterogeneous computing resources. If the application
has certain dependencies or requirements specific to the operating system, the
 Chapter 6. Project and design of grid applications 87

application needs to verify that the correct environment is available and handle
issues related to the differing environments.

File formats
Knowledge of the format of files in the system is necessary when the output of an
application running on one grid host is accessed by another application running
on a different grid host. The two grid hosts may have different platform
environments. XML may be considered as the data exchange format. XML has
now become popular not only as a markup language for data exchange, but also
as a data format for semi-structured data.

Software license considerations
One question that commonly arises when discussing grid computing is that of
software license management. There are many products and solution designs
that can help with license management.

Commercial software licenses
It is important to discuss how to deal with software licenses that are used inside
the grid. Insufficient numbers of licenses may seriously hinder the expansion or
even exclude certain programs or applications from being used in a grid
environment.

The latter is the case if the grid is going to access personally licensed
applications on a personal computer, for example, in a scavenging mode use of
single-user licensed software. This cannot be done without violation of the
license agreement.

Different models
The range of license models for commercial software spans from all restrictive to
all permissive.

Between these two extremes, there are numerous models in the middle ground,
where licenses are linked to a named user (personal license), a workgroup, a
single server, or a certain number of CPUs in a cluster, to a server farm, or linked
to a certain maximum number of concurrent users.

Software licenses are given with a one-time charge or on a monthly license fee
base. They can include updates or require the purchase of new licenses. All this
varies from vendor to vendor, and from customer situation to customer situation,
depending on individual agreements or other criteria.

Software licenses may allow for the migration of software from one server to
another or may be strictly bound to a certain CPU. Listing all possible software
licensing models could easily fill a book, but we cover a few next.
88 Grid Services Programming and Application Enablement

Service provider license agreement
Subscriber Access Licenses (SALs) are offered by service providers, for
example, on a pay-per-use basis or as a flat rate for a certain maximum number
of access times per month/week/year.

IT service providers, in turn, may acquire software licenses from ISVs for use by
their customers, or they may simply host software for which the end user will pay
directly to the providing ISV according to their agreed license model.

Open source licensing
Another complexity is added when a software product is built that contains or
requires open source software like the Globus Toolkit or Apache. The open
source model is based on the principle that anybody (an ISV or private person)
can provide software to any interested party that can be modified, customized, or
improved by the recipient.

The modifying recipient, in turn, can offer this changed code to anybody, who
again can change it when needed. Therefore, there can be many developers in a
loose community participating in development and improvement of a given set of
code.

In this case, licenses are not bound to binary executables but cover source code
as well. The following three licensing models for open source software are the
most common, though there are several more, which may need to be
investigated in a specific case.

FreeBSD, MIT, Apache (all permissive licenses)
The license models for FreeBSD, MIT, and Apache are all permissive, which
means that they allow for free distribution, modification, and license changes.
Software without copyright (public domain software) falls under this category as
well.

For details on FreeBSD, see:

http://www.freebsd.org/

For details on BSD licenses, see:

http://www.opensource.org/licenses/bsd-license.php

For MIT licenses, see:

http://www.opensource.org/licenses/mit-license.php

For the Apache Software License, see:

http://www.opensource.org/licenses/apachepl.php
 Chapter 6. Project and design of grid applications 89

http://www.opensource.org/licenses/apachepl.php
http://www.opensource.org/licenses/mit-license.php
http://www.freebsd.org/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/mit-license.php

LGPL (persistent license)
The Lesser General Public License (LGPL) allows free distribution of the
software, but restricts modifying it. All derivative work must be under the same
LGPL or GPL. The definition of this license type can be found at:

http://www.opensource.org/licenses/lgpl-license.php

GNU GPL, IBM Public License (persistent and viral license)
The GNU General Public License (GPL) as well the IBM Public License (PL)
shows a persistent and viral model, which means that it allows free distribution
and modifying, but all bundled and derivative work must be under GNU GPL as
well.

The GNU GPL can be found at either of the following Web sites:

http://www.gnu.org/copyleft/gpl.html
http://opensource.org/licenses/gpl-license.php

The IBM PL can be found at:

http://www.opensource.org/licenses/ibmpl.php

For Open Source Initiative (OSI) certified licenses and approvals, visit:

http://opensource.org/docs/certification_mark.php

For the OSI portal, simply go to:

http://www.opensource.org

There is a list of all approved open source licenses at the following Web site.
GPL, LGPL, BSD and MIT are the most commonly used so-called "classic"
licenses.

http://www.opensource.org/licenses/

License management tools
In order to manage most of these license models in a network, there are a
number of license management tools available. These tools ensure that all
software that is included in a network or a grid application is properly used
according to its license agreements.

Most of the license manager providers offer an SDK with APIs for various
programming languages. The span of license models covered by each product
varies. In the following sections, some of the most often used tools are listed.

FLEXlm
In the Linux world, FLEXlm is foremost; it offers 11 core models and 11 advanced
licensing models. The core models include: Node-locked, named-user, package,
90 Grid Services Programming and Application Enablement

http://www.opensource.org/licenses/
http://www.opensource.org
http://opensource.org/docs/certification_mark.php
http://www.opensource.org/licenses/ibmpl.php
http://opensource.org/licenses/gpl-license.php
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/licenses/lgpl-license.php

floating (concurrent) over network, time-lined, demo, enable/disable product,
upgrade versions, etc.

The advanced licensing models span from capacity, over site license, license
sharing (user, groups, hosts), floating over list of hosts, high-water mark, linger
license, overdraft, and pay-per-use, to network segments and more.

The complete list of supported licensing can be found at the following Web site:

http://www.globetrotter.com/flexlm/lmmodels.sthm

More information about the use and advantages of this de-facto standard of
electronic license management technology in the Linux world is available at:

http://www.globetrotter.com/flexlm/flexlm.shtm

Tivoli License Manager
IBM Tivoli License Manager is a software product that supports management of
licenses in a network. Due to its nature, it is possible to reflect most of the license
models being used in the industry. IBM Tivoli License Manager can reflect
various stages of use during a piece of software's life time.

The IBM Redbook Introducing IBM Tivoli License Manager, SG24-6888,
provides examples of how to reflect IBM, Microsoft®, Oracle, and other vendors'
license models in its management.

IBM Tivoli License Manager is integrated with WebSphere Application Server
and available for AIX, Solaris, and several Microsoft Windows platforms.

More details about the product are also given on the IBM Software Group Web
site at:

http://www.ibm.com/software/tivoli/products/license-mgr/

IBM License Use Management (LUM)
IBM License Use Management (LUM) in its current version (4.6.6) is designed for
technical software license management since it is deployed by most IBM
use-based software products. It is intended to be integrated with any vendor
software in order to control use-based licensing of the software.

LUM is available for all Windows platforms, AIX, HP-UX, Linux, IRIX, and Solaris.
It supports a wide range of C, C++, and Java development environments. It can
be used in networks with most of the available Web servers.

Software developers can reflect various use-based license models while
integrating LUM APIs in their software products. It can be used for monitoring
and controlling the use of software in networks.
 Chapter 6. Project and design of grid applications 91

http://www.ibm.com/software/tivoli/products/license-mgr/
http://www.globetrotter.com/flexlm/flexlm.shtm
http://www.globetrotter.com/flexlm/lmmodels.sthm

More details can be found on the IBM software group Web site at:

http://www.ibm.com/software/is/lum/

Platform Global License Broker
Among the various ISVs that offer grid software products, Platform shows a
special grid-oriented license management feature named Platform Global
License Broker.

This product runs on AIX, HP-UX, Compaq Alpha, and IRIX. It uses Globetrotter
FLEXlm 7.1 as described above. More details on Platform Global License Broker
are available on the Internet at:

http://www.platform.com/products/wm/glb/index.asp

General license management considerations
When designing and deploying grid-enabled applications, it is important to
understand any licensing requirements for required runtime modules. If
designing a broker or utilizing MDS to identify possible target resources on which
to run the application, the existence or applicability of any required software
licenses should be taken into account.

6.4 Develop a high-level design
Once the requirements have been defined and signed off, a high-level design
can be finalized. You will likely find the architects building prospective high-level
designs during the requirements phase. Now those designs must be fleshed out,
evaluated and finalized.

When building a grid system and having the GT3 as a requirement, the design
should try to exploit as much of the GT3 functionality as possible. There is no
sense in reinventing the wheel when the GT3 toolkit provides rich function,
already in use by other designers around the world. You simply layer your
application-level problem on top of the GT3 features and fill in any remaining
holes of function.

GT3 is a large toolkit and there are features that we do not describe in this
document. If you have a sufficiently complex application, it will be a valuable use
of your time to read the GT3 documentation after finishing this document to see
what else is available before you begin your design. The feature you need may
be available, saving you a lot of design, development and testing time.

In the grid arena, the first part of the high-level design is the definition of the
interface contract that the services make to the rest of the grid.
92 Grid Services Programming and Application Enablement

http://www.platform.com/products/wm/glb/index.asp
http://www.ibm.com/software/is/lum/

6.4.1 Define interfaces
The grid service interface is all of the public aspects that you will be providing,
including methods (with their parameters and return types), service data and
notification strategy. The definition of a grid service is very similar to the definition
of a Web service, but grid service developers have a few more features to use.

6.4.2 Define method parameters and return types
Each grid service is comprised of one or more methods. In the code for the client
of a service, with the help of a small number of Globus helper classes, a local
proxy object is created that represents the running grid service somewhere else
on the network. The methods that are defined as public by the remote service are
by nature also available on this local proxy object.

In addition to the list of method names, the designer must define the full method
signature, including any passed-in parameters and any returned values.

Programmers can define the grid service’s interface in one of two ways:

� Top-down approach: a grid service description definition is written in an XML
language called GWSDL, which is an extension to the Web services WSDL
language.

� Bottom-up approach: A Java Interface class is created which defines all
method signatures in native Java syntax.

Later in the document, we go over the details and discuss the pros and cons of
each.

6.4.3 Define service data and notification strategy
As discussed previously, grid services are written as an extension to the Web
services standards. Everything we have discussed so far in this chapter is
compliant with Web services. Two of the first major extensions that move
designers into the grid services world are service data and notification.

Service data
SDE (5.3, “Service Data Elements” on page 61) is a collection of objects which
are directly accessible by clients. This differs from method-based access to data
since the object itself is public and any client can access it simply by requesting it
by name. The service interface can place restrictions on service data by defining
attributes such as the minimum and maximum number of instances of the SDE,
whether clients can write to the object (in addition to the default of only having
read access) and whether an object must always exist or can be null.
 Chapter 6. Project and design of grid applications 93

Notification
Service Data and notification (see 5.5, “Notifications” on page 67) go virtually
hand in hand. As described above, service data can be used to implement
asynchronous processing, but how does the client know that the operation is
complete and the data is waiting in an SDE? Notification is the answer.
Notification operates on a subscription model; when a client wants notification
against an SDE, it uses GT3 helper methods to subscribe, given the SDE’s
symbolic name. When the grid service places a result in an SDE, it uses GT3
helper methods to fire notifications to all of the client subscribers. The notification
can be of one of two styles:

� Push: the SDE in question is sent along with the notification event to the client

� Pull: a dummy SDE is sent along with the notification event to the client, and
the client has to query back to the SDE to get the updated value

The designers pick one or the other style depending on the needs of the
application.

To summarize, Service Data and Notification from the designer’s point of view:

� Determine what data you want to expose in a non-method-call manner.
Service data is generally used to expose the state of a service, intermediate
calculations, percent completion, etc. These can also be exposed via method
calls, but may make more sense as SDEs in a particular application.

� Determine if you will provide notification on one or more SDEs and whether
you will use push or pull style. Notification is generally used to provide
asynchronous notification of the change in state of an SDE. There is no way
to provide this type of functionality short of a long-blocking method call or
polling.

6.4.4 Define the life cycle
The life cycle of a grid service (see 5.4, “Life cycle” on page 64) starts with its
instantiation, continues with its execution, and ends with its termination.

There are several ways to instantiate a grid service:

� Command-line tools provided by the GT3 toolkit: Helper commands such as
ogsi-create-service are provided and can be used to instantiate a grid
service. This is a useful tool during development and testing but in production,
it is better to control in an automated manner rather than by human
command.

� Automatic startup by grid service container: a grid service can be marked for
automatic startup when you start the grid service container. When the
container is up and running, your instance is immediately available.
94 Grid Services Programming and Application Enablement

� Programmatic creation using GT3 helper classes: the most common method
is to use GT3 helper classes in an administration tool or in the service client to
create instances.

At the time of creation, the new instance receives several calls to well-defined
method names, that the instance can use to initialize itself. It could pull in data,
establish connections with other parts of the system, create other service
instances, etc.

During execution, the service instance responds to method calls, updates its
SDEs and fires notifications as necessary.

There are several ways to terminate a service:

� Command-line tools provided by the GT3 toolkit: helper commands such as
ogsi-destroy-service are provided and can be used to terminate a grid
service. This is a useful tool during development and testing but in production,
it is better to control in an automated manner rather than by human
command.

� Automatic termination by grid service container: a grid instance defaults to
having a lifespan of Infinity, but can be given a shorter lifespan at the time
of creation. When that time expires, the grid service container gracefully
terminates the instance. Note that any clients attempting to access the
service afterward will receive exceptions.

� Programmatic destruction using GT3 helper classes: the most common
method is to use GT3 helper classes in an administration tool or in the service
client to destroy instances when they are no longer needed.

At the time of destruction, the instance receives several calls to well-defined
method names that the instance can use to gracefully terminate itself. It could
write out data, shut down connections with other parts of the system, destroy
other service instances, etc.

6.4.5 Define security
Security is a very wide-ranging topic, but it is sufficient at this point of the design
to simply note those components which have a security sensitivity. This could
mean data that requires encryption, users who must pass an authentication
phase, methods which must be checked for authorization, etc.

6.4.6 Run the scenarios to ensure that the requirements are satisfied
At this time, the architecture should be checked against the functional and
non-functional requirements and the use cases to ensure that there are no
problems.
 Chapter 6. Project and design of grid applications 95

6.5 Develop a detailed design
At this point, we take the high-level design and flesh out the details to a point
where work can be handed off to developers. This stage can take quite a bit of
time to ensure all details of the design are sufficiently defined. All system
interfaces are fully specified, major classes are fully specified and other required
behavior is defined.

Performing the detailed design requires a deeper linking between application
constructs and the GT3 toolkit functionality. You have enough knowledge now to
follow the document until the detailed GT3 features are explained below, just
before we begin development of our sample application, but the one item we will
cover now is how a grid application can behave, or flow, as part of solving a
larger problem in a grid environment. Figuring out the best grid design and its
implications for your application early will prevent possible problems if it turns out
the design is not appropriate to the solution.

6.5.1 Application flow in a grid
First we define some terms:

Grid application: A collection of work items to solve a certain problem or to
achieve desired results using a grid infrastructure. A grid application may consist
of a number of jobs that together fulfill the whole task.

Job: Considered as a single unit of work within a grid application. It is typically
submitted for execution on the grid, has defined input and output data, and
execution requirements in order to complete its task. A single job can launch one
or many processes on a specified node.

Data producer and consumer: Jobs that produce output data are called
producers, and jobs receiving input data are called consumers. Instead of an
active job as the final consumer of data, there can be a defined data sink of any
kind within the grid application. This could be a database record, a data file, or a
message queue that consumes the data.

In this chapter and in the light of these simple concepts, we will discuss the
different application flows and the criteria that apply to jobs, data and others
regarding usability and those that can be qualified as non-functional.

A grid-enabled application may consist of multiple jobs. Traditional applications
execute in a well known and somewhat static environment with fixed assets. We
need to look at the considerations (and value) for having an application run in a
grid environment where resources are dynamically allocated based on actual
needs.
96 Grid Services Programming and Application Enablement

If taking advantage of multiple resources concurrently in a grid, you must
consider whether the processing of the data can happen in parallel tasks or
whether it must be serialized and the consequences of one job waiting for input
data from another job. What may result is a network of processes that comprise
the application.

Application flow vs. job flow
We understand here that an application flow is the flow of work between the jobs
that make up the grid application. The internal flow of work within a job itself is
called the job flow. There are three basic types of application flows that can be
identified:

� Parallel
� Serial flow
� Networked

We will discuss each of these in more detail in the following sections.

Parallel flow
If an application consists of several jobs that can all be executed in parallel, a
grid may be very suitable for effective execution on dedicated nodes, especially
in the case when there is no (or a very limited) exchange of data among the jobs.

From an initial job, a number of jobs are launched to execute on pre-selected or
dynamically assigned nodes within the grid. Each job may receive a discrete set
of data, fulfill its computational task independently and deliver its output.

The output is collected by a final job or stored in a defined data store. Grid
services, such as a broker and/or scheduler, may be used to launch each job at
the best time and place within the grid.
 Chapter 6. Project and design of grid applications 97

Figure 6-1 Parallel application flow

For a given problem or application, it would be necessary to break it down into
independent units. To take advantage of parallel execution in a grid, it is
important to analyze tasks within an application to determine whether they can
be broken down into individual and atomic units of work that can be run as
individual jobs.

This parallel application flow type is well suited for deployment on a grid.

Significantly, this type of flow can occur when there are separate data sets per
job and none of the jobs need result from another job as input.

Serial flow
In contrast to the parallel flow is the serial application flow. In this case, as is
shown in Figure 6-2, there is a single thread of job execution where each of the
subsequent jobs has to wait for its predecessor to end and deliver output data as
input to the next job. This means that any job is a consumer of its predecessor,
the data producer.

Figure 6-2 Serial job flow
98 Grid Services Programming and Application Enablement

In this case, the advantages of running in a grid environment are not based on
access to multiple systems in parallel, but rather on the ability to use any of
several appropriate and available resources. Note that each job does not
necessarily have to run on the same resource, so if a particular job requires
specialized resources, this can be accommodated, while the other jobs may run
on more standard and inexpensive resources.

The ability for the jobs to run on any of a number of resources also increases the
application's availability and reliability. In addition, it may make the application
inherently scalable through the ability to utilize larger and faster resources at any
particular point in time.

Nevertheless, when encountering such a situation, it may be worthwhile to check
whether the single jobs are really dependent on each other, or whether, due to
their nature, they can be split into parallel executable units for submission on a
grid.

Parallelization
Section 2.1 of the redbook Introduction to Grid Computing with Globus,
SG24-6895 provides certain thoughts about parallelization of jobs for grids. For
example, when dealing with mathematical calculations, the commutative and
associative laws can be exploited.

In iterative scenarios (for example, convergent approximation calculations)
where the output of one job is required as input to the next job of the same kind,
a serial job flow is required to reach the desired result. For best performance
these kinds of processes might be executed on a single CPU or cluster, though
performance is not always the primary criterion. Cost and other factors must also
be considered, and once a grid environment is constructed, such a job may be
more cost effective when run on a grid than by utilizing a dedicated cluster.

In case it is not possible to completely convert a serial application flow into a
parallel one, a networked application flow may result.

Networked flow
In this case (perhaps the most common situation), complexity comes into play.
Certain jobs within the application are executable in parallel, but there are
inter-dependencies between them.
 Chapter 6. Project and design of grid applications 99

Figure 6-3 Networked job flow

Loose coupling
For a grid, this means the need for a job flow management service to handle the
synchronization of the individual results. Loose coupling between the jobs avoids
high inter-process communication and reduces overhead in the grid.

For such an application, you will need to perform more analysis to determine how
best to split the application into individual jobs, maximizing parallelism. This also
adds more dependencies on the grid infrastructure services such as schedulers
and brokers, but once that infrastructure is in place, the application can benefit
from the flexibility and utilization of the virtualized computing environment.
100 Grid Services Programming and Application Enablement

Figure 6-4 Jobs with sub jobs in a grid application

Jobs and sub-jobs
Another approach to ease the management of jobs within a grid application is to
introduce a hierarchical system of sub-jobs. A job could utilize the services of the
grid environment to launch one or more sub-jobs. For this kind of environment,
an application would be partitioned and designed in such a way that the
higher-level jobs could include the logic to obtain resources and launch sub-jobs
in whatever way is most optimal for the task at hand. This may provide some
benefits for very large applications to isolate and pass the control and
management of certain tasks to the individual components.

6.5.2 Job criteria
A job as part of a grid application can theoretically be of any type: batch,
standard application, parallels application, and/or interactive. In the next
paragraphs, we will discuss these types.

Batch job
A job in a grid environment could be a traditional batch job on a mainframe or a
program invoked via a command line interface in a Windows, Unix, or Linux
environment. Normally, arguments are passed to the program, which can
represent the data to process and parameter settings related to the job's
execution.

Depending on its size and the network capacities, a batch job can be sent to the
node along with its arguments and remotely launched for execution. The job can
be a script for execution in a defined environment (for example, REXX, Java, or
 Chapter 6. Project and design of grid applications 101

Perl script), or an executable program that has few or no special requirements for
operating system versions, special DLLs to be linked to, JAR files that need to be
in place or any other special environmental conditions.

The client, portal, and/or broker may need to know the specific requirements for
the job so that the appropriate resource can be allocated.

The data for its computation is either transmitted as arguments or accessible by
the job, be it in local or remote storage or in a file that can also be sent across the
grid.

A batch job, especially one with few environmental requirements, is generally
well suited for deployment in a grid environment.

Standard application
A grid environment can also be applicable to a standard application, like
spreadsheets or video rendering systems. For example, if extensive financial
calculations on many variations of similar input parameters are to be done, these
could be processed on one or more nodes within the grid.

Often, such a standard application requires an installation procedure and cannot
be sent over the network to run simply as a batch job. However, a provided
command line interface can be remotely used on a grid for execution of the
application where it is installed.

In this case, the grid broker or grid portal needs to know the location of the
application and the availability of the node. The location of the applications on
the grid is relatively fixed, meaning that in order to change it, a new installation
has to be performed and the application may need to be registered with the grid
portal or grid server before it can be used.

New installations are mostly done manually since the applications often require
certain OS conditions and application settings, or very often when installing on
Windows, a reboot needs to be executed. This makes standard applications in
many cases quite difficult to handle on a grid, but does not exclude them. As
advances in autonomic computing provide for self-provisioning, there will be less
restrictions in this area.

Using standard software as jobs within a grid could raise licensing issues, either
due to the desire to have the application installed on many different nodes in the
grid, or related to single-user versus multi-user license agreements. For a more
detailed discussion of licenses in a grid environment, refer to redbook Enabling
Applications for Grid Computing with Globus, SG24-6936-00.
102 Grid Services Programming and Application Enablement

Parallel applications
Applications that already have a parallel application flow, such as those that have
been designed to run in a cluster environment, may already be suited to run in a
grid environment. In order to allow a grid server or grid portal to make the most
advantage of these, there need to be identifiable and accessible handles to the
inner functions/jobs of such a parallel application. If this is not the case, such an
application can only be handled as one unit, similar to a standard application.

However, it makes sense to include such an application in a grid if the overall
task requires more than the resources available in a given cluster. This means
that the grid could include several clusters with copies of a parallel application.

Interactive jobs
Interaction with a grid application is most commonly done via the grid portal or
grid server interface. This implies that except for when launching the job, there
should not be ongoing interaction between the user and the job.

Of course, if we go back to our initial view of the grid as a virtual computing
resource, it is certainly plausible to think of an application requiring user
interaction being launched on any appropriate resource within the grid as long as
a secure and reliable communications channel could be created and maintained
between the user and the resource.

Although the GSI-Enabled SSH package is available and could be used to create
a secure session, the Globus Toolkit does not provide any tools or guidance for
supporting such an application.

6.5.3 Programming language considerations
Whenever an application is being developed, the question of the programming
language to be used arises. The grid environment may include additional
considerations.

Jobs that are made for high-performance computing are normally written in
languages such as C or Fortran. Those jobs whose individual execution time
does not play the most important role for the application, but whose contents and
tasks are of more importance, may be written in other languages such as Java,
or in scripting languages such as Perl.

Within a single grid application, you might even consider writing various parts in
different languages, depending on the requirements for the individual jobs and
available resources. Some of the key considerations include:
 Chapter 6. Project and design of grid applications 103

Portability to a variety of platforms
This includes binary compatibility where languages such as Java provide an
advantage, since a single binary can be executed on any platform supporting the
Java Virtual Machine. Interpreted languages such as Perl also tend to be
portable, allowing the application to run no matter what the target platform.

Portability of source code can also be considered. For instance, you may decide
to develop an application using C, and then compile it multiple times for a variety
of target platforms. This will require additional work by the infrastructure to
ensure that appropriate executables are distributed to any target resource.

Runtime libraries/modules
Depending on the language and how the program is linked, there may be a
requirement for runtime libraries or other modules to be available. Again, the
successful running of an application will depend on these libraries being
available on, or moved to, the target resource.

Interfaces to the grid infrastructure
If the job must interface with the grid infrastructure, such as the Globus Toolkit,
then the choice of language will depend on available bindings. For example,
Globus Toolkit 2.2 includes bindings for C. However, through the CoG initiative,
there are also APIs and bindings for Java, Perl and other languages. Note that
an application may not have to interface with the Globus Toolkit directly, since it
is more the responsibility of the infrastructure that comes into play. That is, given
an appropriate infrastructure, the application may be developed such that it is
independent of the grid-specific services.

One of the driving factors behind the OGSA initiative is to standardize the way
that various services and components of the grid infrastructure interface with one
another. This provides programming language transparency between two
communicating programs. That is, a program written in C, for example, could
communicate with or through a service that is written in another language.

6.5.4 Job dependencies on the system environment
As shown earlier, a grid application does not require a homogenous runtime
environment, but there are certain considerations to be taken into account in
order to plan for the most beneficial deployment.

For any job in a grid application, the following environmental factors may affect
operation. When developing an application, one must consider these factors and
either design it to be as independent of these factors as possible, or understand
that any dependencies will need to be taken into account within the grid
infrastructure.
104 Grid Services Programming and Application Enablement

� Important considerations are the operating system version, service level, and
OS parameter settings that are necessary for execution of the job, as well as
reliance on certain system services and auxiliary programs such as a registry.
It is worthwhile to consider whether the grid application will be capable of
running its jobs on any node with different operating systems or whether it will
be restricted to a single operating system.

� The memory size required by a job may limit the possible nodes on which it
can run. The available memory size depends not only on its physical
presence at a node, but also on how much the operating system is capable of
granting at runtime.

� DLLs that are to be linked for the execution of the job either need to be
available on the target resource or could possibly be transferred and made
available on the resource before the job is executed.

� Compiler settings play a role as compiler flags and locations may be different.
For example, subtle differences like bit ordering and number of bytes used for
real and integer numbers may cause failures when a job is compiled on a
different node or operating system than the one where it will eventually be
executed.

� There must be a runtime environment in place and ready to receive the job for
execution. For instance, the right JDK or interpreter versions may have to be
planned and in place.

� Application Server version and standard as well as its capacity may need to
be considered as well as access requirements and services to be used.

� Other applications that are needed to properly run a job have to be in place
prior to deployment of the grid application. These applications can be
compilers, databases, system services such as the registry under Windows,
and so on.

� Hardware devices may be required for certain jobs to perform their tasks. For
example, requirements for storage, measurement devices, and other
peripherals must be considered when building the application and planning
the grid architecture.

When developing the grid application, these prerequisites need to be checked in
order to avoid too many restrictions for job execution. A large number of
restrictions could mean more complicated enablement as well as limiting the
number of possible nodes on which the job will be able to run. Therefore, it is
better to restrict such requirements during development of the application such
that jobs can run in as generic an environment as possible.
 Chapter 6. Project and design of grid applications 105

6.5.5 Checkpoint and restart capability
A job within a grid application may be designed to be launched, perform its tasks,
and report back to the user or grid portal regarding its success or failure. In the
latter case, the same job may be launched for a second time, if it has not
changed any persistent data prior to its error state. This process can then be
repeated until final successful completion. However, it may make sense that
failures be handled by the grid server to allow a more sophisticated way to
achieve job completion.

By building checkpoint and restart capabilities into the job and making its state
available to other services within the grid, the job could be restarted where it
failed, even on a different node.

6.5.6 Job topology
For a grid application, there are various topology-related considerations. There
are certain architectural requirements covering the topology of jobs and data.

When designing the grid application architecture, some of the key items to
consider are:

� Where grid jobs have to or can run
� How to distribute and deploy them over a network
� How to package them with essential data
� Where to store the executables within the network
� How to determine a suitable node for executing the individual jobs

The following are some factors that should be included when considering the
above items:

� Location of the data and its access conditions for the job

� Amount of data to be processed by the jobs

� Interfaces needed for any interaction with certain devices

� Inter-process communication needed for the job to complete its tasks

� Availability and performance values of the individual nodes at time of
execution

� Size of the job's executable and its ability to be moved across the network

When developing grid-enabled applications, you may not know anything about
the topology of the grid on which they will run. However, especially in the case of
an intra-grid that may be put in place to support a specific set of applications, this
information may be available to you. In such a case, you may want to structure
your application and grid in such a way as to optimize the environment by
106 Grid Services Programming and Application Enablement

considering the location of the resources, the data, and the set of nodes on which
a particular application might run.

6.5.7 Passing of data input/output
As defined earlier, any job in the grid application needs to pass data in and out in
the way of a data producer and a data consumer.

There are various ways to realize the passing of data input and output that are to
be considered during application architecture and design:

� Command line interface (CLI) can be a natural way for batch jobs and
standard applications to receive data. In this case, the data input normally will
not be complex in nature, but consists of certain arguments used as
parameters to control the internal flow of the job. Such CLIs can easily be
integrated in scripts executed at the system level or within a given interpreter.
The transfer of data to the job as a consumer happens immediately at launch
time. The amount of data will normally be small. For larger amounts of data,
there can be arguments that specify the name of a data file or other data
source.

� Data store of any kind, such as data files in the file system (local or on a LAN
or WAN) or records in a database, a data warehouse or other storage system
that is available. These data stores can be used for input as well as output of
data given that the required access rights are granted to the job. The transfer
of data in can be done anytime before the job executes, and likewise the
output data could be read anytime after the job completes, thereby providing
flexibility for data movement operations.

� Message queues, like those provided by WebSphere MQSeries®, are well
suited to be used for asynchronous tasks within a grid application, especially
when guaranteed delivery of the data provided to the job and generated by
the job is of high importance. A job can access the data queues in various
ways, normally using specific APIs for putting or getting data as well as for
polling the queue for data waiting for processing. In an environment where
message queuing servers are already installed, this type of data passing may
be desirable.

� System return value is a corresponding case to the CLI and normally a way a
batch job or any CLI invoked program will return data, or at least status
information about how the job ended. This indicates to the grid server or grid
portal the status of the individual job and requires appropriate management.
The resulting data of the job may be passed to a data store or message
queue for further processing or presentation.

� Other APIs; when communicating with Web services, Web servers,
application servers, news tickers, measurement devices, or any other
external systems, the appropriate conditions for data passing in and out have
 Chapter 6. Project and design of grid applications 107

to be taken into consideration. In these cases, you may use HTTP, HTML,
XML, SOAP, or other high-level protocols or APIs.

As indicated, for a grid application there may not be only one way to pass data
for a job, but you may use any combinations of the described mechanisms. It is
recommended to program grid jobs in such a way that the data sources and
sinks are generically handled for more flexible grid topologies. The optimal
solution depends on the environment and the requirements to be considered at
the architecture and design phase of the grid application.

6.5.8 Transactions
Handling of transactions in their strict definition of commit and roll-back is not yet
well suited for a common grid application. The OGSI does not cover these
services. However, a grid application may include subsystems or launch
transaction-aware operations to subsystems such as CICS®.

For example, you can use a grid node on Linux on zSeries® to get access to a
mainframe operating system like z/OS. The zSeries has a built-in high-speed
network called hyper sockets. The operating system just sees a network adapter
and you can connect to the data bases and transactions systems running on
z/OS.

For information about Linux for zSeries applications, please visit:

http://www.ibm.com/servers/eserver/zseries/solutions/s390da/linuxisv.html

The handling of transactions within a grid application easily becomes quite
complex with the given definitions, and it needs to be carefully applied. The
added benefits of a grid application may be outweighed by the complexity while
implementing transactions.

The future development of the OGSA standard may include transaction handling
as a service, though at the moment there is no support.

6.5.9 Data criteria
Any application, at its core, is processing data. This means that we must take a
closer look at data being used for and within a grid application.

Data influences many aspects of application design and deployment and
determines whether a planned grid application can provide the expected benefits
over any other data solution.

A detailed discussion is provided in Chapter 4 of the redbook Enabling
Applications for Grid Computing with Globus, SG24-6936-00.
108 Grid Services Programming and Application Enablement

http://www.ibm.com/servers/eserver/zseries/solutions/s390da/linuxisv.html

6.5.10 Usability criteria
While much of a grid computing solution is involved with infrastructure and
middleware, it is still appropriate to consider aspects of the solution that relate to
usability.

Traditional usability requirements
Traditional usability requirements address features that facilitate ease-of-use
with the system. These features address interaction, display, and affective
attributes that provide users with an effective, responsive, and satisfactory
means to use the system. Hence, these features must be also be addressed
when developing a grid computing solution; in other words, this is "business as
usual" and continues to play an important part in establishing the requirements
for a grid solution.

Usability requirements are used to:

� Provide baseline guidance to the user interface developers on user interface
design.

� Establish performance standards for usability evaluations.

� Define test scenarios for usability test plans and usability testing.

Some of the typical usability requirements established for an IT solution play a
role and include:

� Tailorability: what requirements exist for the user to customize the interface
and its components to allow optimization based on work style, personal
preferences, experience level, locale, and national language?

� Efficiency: how will the application minimize task steps, simplify operations,
and allow end-user tasks to be completed quickly?

Usability requirements for grid solutions
Grid solutions must address usability requirements recognizing a variety of user
categories that may include:

� End users wishing to log in to the grid, submit applications to the grid, query
status, and view results

� Owners/users of donor machines

� Administrators and operators of the grid

Consequently, the typical steps followed to identify these requirements for any
solution should continue to be followed when creating a grid solution. In addition,
the following items may influence the design of grid solutions.
 Chapter 6. Project and design of grid applications 109

6.5.11 Installation
The grid solution should provide easy, automatic installation by a non-technical
person rather than a systems programmer with the need to modify scripts,
recompile software, and so on. The install process should be equally
straightforward for host, management, and client nodes regardless of the
potentially heterogeneous nature of the nodes in terms of operating system or
configuration.

6.5.12 Unobtrusive criteria
Transparency and ease of use, as well as job submission and control, are not
obvious items, but are essential for a good grid design. The following should be
considered regarding those items:

� The use of a grid should be transparent to the user. The grid portal should
isolate the user from the need to understand the makeup of the grid.

� Is documentation available or required for all categories of user including
executive level summaries on the nature and use of the grid, programmer and
administrative support staff? Where possible, the documentation should
provide demos and examples for use.

� Ease of resource enrollment after any installation steps should provide a
simple configuration of grid parameters to enable the node and its resources
to be a participant on the grid. The administrator of the grid or user of a donor
machine should not require special privileges to enroll.

� Ease of job submission should alleviate the need for the user to understand
the makeup of the grid, search for available resources, or to have to provide
complex parameters other than from the business nature of the application. It
may be appropriate to provide multiple channels for job submission including
a command line (although this has not typically provided ease of use) and a
graphical user interface via the grid portal.

If the architectures of the grid resources are heterogeneous in nature, the
solution should provide automation to hide these complexities and provide
tools for compiling applications for multiple execution environments. This
could also be considered under portability requirements typically addressed
under the non-functional requirements.

� Ease of user and host access control should be provided from a single source
with appropriate security mechanisms.

6.5.13 Informative and predictable aspects
The status of the grid must be readily available to continually show the status and
operation of the grid. This may include indicators showing grid load or utilization,
110 Grid Services Programming and Application Enablement

number of jobs running, number of jobs queued but not yet dispatched, status of
hosts, available resources, reserved resources, and perhaps highlighting
bottlenecks or trouble spots.

Since the makeup of the grid may be changing dynamically, predicting response
times becomes harder. The appropriate trade-offs should be discussed to
establish acceptable requirements with associated costs based on the needs of
the business.

6.5.14 Resilience and reliability
Some aspects for resilience and reliability of the grid application have already
been covered. In this section, they are highlighted from the grid user perspective.

� Particular attention must be paid to the requirements for handling failures.
Failures should be handled gracefully. The nature of the application must be
understood to identify the correct handling of failures and to provide
automatic recovery/restart where possible. Appropriate user notification
should be included, recognizing that the actual user may not always be
connected to the grid. Consequently, asynchronous mechanisms for
feedback might need to be incorporated.

� The nature of applications that are suitable to run on the grid may provide a
level of tolerance to failure not typically found in traditional applications. An
example of this maybe in the "scavenging" scenario where the application as
a whole may be able to tolerate failure of one or more sub-jobs. Since jobs
are run on donor machines, the application is subject to the availability of
these machines, which are typically outside the application's scope of control.
Consequently, the application must tolerate not receiving results from jobs
dispatched to these donor machines.

� Applications must be fully integrated with systems management tools to
report status and failures. In addition, requirements should be established for
how this information will be made available to the end user, indicating the
status of their jobs.

� Consideration may also be given to providing intermediate results to an end
user when valid results can be achieved.

6.6 Implement the design
At this point, we start the writing process itself.
 Chapter 6. Project and design of grid applications 111

6.6.1 Write the interface
Accordingly, you should write the service interface in one of two methods allowed
by GT3: a Java Interface class or a Grid Web Services Description Language
(GWSDL) file. If the grid service is a list of public methods, then you can likely get
away with using a Java interface. If your grid service is more complex and will
include Service Data, then you are forced to use a GWSDL file.

The service interface includes

� All public methods
� Method parameters
� Method return types
� Service Data Element definitions

It is the nature of the syntax of the Java language that the additional information
required for service data cannot be put into a Java interface class. There is a
GT3 sub-project called Guide, which contains specialized ant scripts and tools
that look for certain tokens in the Java source file’s comments to define service
data, but this is not a “mainstream” feature of GT3.

In the future, the GT3 project may choose to take advantage of a new feature
going into Java 1.5 called Metadata or Annotations. For details, see
http://www.jcp.org/en/jsr/detail?id=175. Annotations are extra tokens you
can put into a Java source file, but they are actually processed and placed into
the .class file by the Java compiler. Other tools will be able to read these
annotations in the.class files and perform actions based on what is found.
Defining service data and other GT3 features in the Java source file would be a
very powerful use of this feature, but it would involve the GT3 community
accepting the idea, defining GT3 tokens, writing the .class file processing tools
and forcing the GT3 community to use Java 1.5 at a minimum.

6.6.2 Write the implementation
With the service interface fully defined, all that remains is to implement the Java
code that performs the requested function when the service’s methods are
called. This can be as simple or as complex as is required for the application.

The developers leverage the relevant parts of the GT3 toolkit as they develop
their code, but this usually represents a small amount of the code above and
beyond the code required to implement the overall business solution.

6.6.3 Write the non-Java parts
Due to the nature of GT3 grid services being layered on top of a Web services
base, GT3 services must have some non-Java components. These fall into the
112 Grid Services Programming and Application Enablement

http://www.jcp.org/en/jsr/detail?id=175

following categories, which will be described in much more detail later in the
redbook:

� Data type descriptors (optional)

If your service uses a complex data type (a new data type comprised of one
or more complex or simple data types), you must define it. The description of
the data type is done in an XML syntax and is given the filename extension
.xsd.

� Service interface descriptor

This is the file that defines the grid service, very similar to the way a Web
Services Description Language (WSDL) file defines a Web service. Since
WSDL files do not have a few extra features which are required for the
complete definition of a grid service, the grid WSDL (GSWDL) file format was
invented. The supplied GT3 tools know how to process GWSDL files and in
fact, the next version of the WSDL specification (1.2) will incorporate the
features in GWSDL and GT3 will migrate to WSDL.

� Service deployment descriptor

This is the file which provides the deployment instructions to the grid service
container, and is similar to the style used for Web services.

6.6.4 Write the clients
With the entire grid service implemented, you must now complete the last step of
writing the clients that access the grid service. As described above, the designer
must follow the architecture and detailed design on such client-specific items as
service life cycle, security, service data/notification, state management, error
handling and data formats/external connections.
 Chapter 6. Project and design of grid applications 113

114 Grid Services Programming and Application Enablement

Chapter 7. Case study: grid application
enablement

This chapter presents a case study which aims to apply the main concepts of grid
service application design, specifying and coding over a real practical grid
application. The study project is a bulletin service application, as could be
implemented by a news organization’s Web site.

The main goal of this chapter is to programmatically explain the various features
of the grid services that have been specified in OGSA and OGSI and further put
into effect in the GT3 reference implementation.

7

© Copyright IBM Corp. 2004. All rights reserved. 115

7.1 Introduction
This case study applies the main concepts of grid service application design,
specifying and coding to a real practical grid application. The target application is
not as complex as a large grid application can be, so some steps of the design
methodology have been skipped. Moreover, the process of coding conversions
will not be detailed, since it is a repetitive task and has already been shown
previously.

The design requirements of this study will use previous knowledge presented in
this document. Each bulletin is a short text message representing a newsworthy
item. The core of the project is the bulletin service itself and several client
applications that drive the flow of bulletins through the service.

Moreover, this study introduces the various steps needed in building a grid
application. Hence, this chapter will not focus on the steps and commands
needed to compile, test, and deploy the grid application.

7.2 Case study: design
This first part focuses on the identification of requirements to produce a general
architecture of the system.

We define high-level functional requirements and non-functional requirements.
Note that no particular grid or Globus feature implementation is implied, leaving
those decisions to the architects and designers in the following phases of
development.

7.2.1 Functional requirements
In this section, we will detail the functionality to be provided by the News Service
application (also known as the bulletin service). In subsequent chapters, these
requirements will be elaborated upon and the design and implementation of the
application will be discussed. The main goal of this chapter is to illustrate the
various features in GT3. Hence, the application is chosen such that its design
covers the different features of GT3. We will first present the functional
requirements of the application in the form of a problem statement and expand
them with the aid of a system context and use cases.

Problem statement
The underlying application is to be used by News Servicervice organization
whose purpose is to electronically publish news bulletin messages to various
subscribers who subscribe to the News Service. The News Service organization
116 Grid Services Programming and Application Enablement

publishes bulletin messages within various categories, such as Business News,
Sports, and Weather. The organization has various employees playing specific
roles; this allows the organization to meet its objective of providing an accurate
news bulletin to its subscribers. Particularly important to this application is the
fact that it has employees playing the writer, editor, and administrator roles. The
writers gather news and submit the news bulletins for approval via this
application. The editors are informed of any pending bulletins that the writers
have submitted. The editors log on to the application, are authenticated by the
application and retrieve the pending news bulletins. Upon review of the news
bulletins, they either approve or disapprove of the news bulletins submitted by
the writers. All approved news bulletins are subsequently published by the
application to all registered subscribers. The administrator is responsible for
starting and stopping the application and performing other necessary
administrative functions. In addition to the writers in the organization, the News
Service organization allows other business partner organizations to submit news
bulletins. Upon receipt of news bulletins from the business partner organizations,
the administrator loads the news bulletins into the application for further review
by the editor and publishing to the subscribers.

System context
In this section, we will illustrate the system context of the problem described
previously. The system context represents the entire system or application as a
single object or process and identifies the events that are passed between the
system and the entities with which it interacts. In turn, it aids in discovering all the
use cases that the system or application must implement. Figure 7-1 on
page 118 shows the system context for the application to be developed for the
problem statement specified in the earlier sub-section.
 Chapter 7. Case study: grid application enablement 117

Figure 7-1 The system context

As shown in Figure 7-1 above, the system or application being built is
represented by the circle in the center. The various entities or actors it interacts
with are represented using stick figures. The events that trigger the application
are shown alongside the arrows from the actor(s) toward the system. Similarly,
the events that are used to notify the actors are shown in the figure alongside the
arrows that point away from the system toward the actors. The administrator,
writer and editor are the roles of the employees within the news agency
organization. The administrator ensures that the system is up and running, the
118 Grid Services Programming and Application Enablement

writer creates and submits the news bulletin to the News Service and the editor is
responsible for approving the bulletin submissions from the writer. The
subscriber is the customer of the News Service. He/she registers for the news
bulletins and has them delivered by the system. The business partner also
contributes to the news agency and submits the bulletin. In the next section, we
describe the roles of the various actors in detail and also describe the use cases
derived from the system context.

Use case model
In this section, we will present the use case model of the solution. A use case
model formalizes the functional requirements of the application under
development. The model uses graphical symbols and text to specify how users in
specific roles will use the system (use cases). The textual descriptions of use
cases are from a user's point of view; they do not describe how the system works
internally or explain its internal structure or mechanisms. The use cases, in
addition to formalizing the requirements, provide an initial structure for the
application to be implemented.

The use case model is shown in Figure 7-2 on page 120. The stick figures on the
left show the various actors using the application. The actors represent the users
in specific roles that use the application. The ovals are the use cases that the
application supports. A use case represent an individual functional behavior of
the application that is triggered by an actor’s action. The arrow from the actor to
the use case shows the communication association between the actors and the
use cases. The application will implement the specified use cases. In
subsequent sections, we will illustrate the various components that are needed
for implementing the use cases of the application. The application will be
implemented using grid services and hence the components will be designed
based on a grid services implementation. In addition, we will specify the design
of the various classes within the components and the interaction diagrams for
implementing the various use cases of the system.

The actors and the associated use cases they trigger are as follows.

Administrator
The administrator is the role within the news organization that manages the
application. Specifically, he/she will perform or trigger four use cases, as shown
in Figure 7-2 on page 120. He/she will use the user interface provided by the
application and trigger the Create Service use case to create a service for a
specific topic, such as for Sports. He/she will trigger the Destroy Service use
case to destroy the service. In addition, he/she can further activate and
de-activate the service by triggering the Activate Service and Deactivate
Service, respectively.
 Chapter 7. Case study: grid application enablement 119

Figure 7-2 Use case model

Writer
The writer is mainly responsible for submitting the news messages to the News
Service. He/she triggers the Submit Bulletin use case. The writer will research
and/or investigate news articles to be published and submit news bulletins for the
various news categories for which the News Service decides to provide News
Service, such as Sports, Weather, and Business News.
120 Grid Services Programming and Application Enablement

Editor
The editor is an approving authority in the News Service organization. He/she
triggers three use cases, namely, Register for Pending Bulletin, Retrieve
Pending Bulletin and Approve Bulletin. In order to perform this role, the editor
needs to be made aware of the news bulletins submitted by the writers via the
Submit Bulletin use case. The application needs to be aware of the specifics of
the editor in order to inform the editor of the pending bulletin messages. The
editor triggers the Register for Pending Bulletin use case in order to register
with the application for the receipt of pending bulletins. Upon registration, the
application registers the editor’s reference and notifies the editor whenever the
application has news bulletins submitted by the writer. During the execution of
Retrieve Pending Bulletin, the editor retrieves the news bulletins and reviews
them. Upon satisfactory review of the news bulletins, the editor executes the
Approve Bulletin use case. The Approve Bulletin use case moves the
approved news bulletins from the pending queue to the approved queue. All
approved messages can be viewed by the subscribers of the News Service. It
should be noted that the editor will execute Retrieve Pending Bulletin and
Approve Bulletin only after he/she is notified by the News Service server of the
existence of pending news bulletins. As stated in the description for the News
Service, it executes the Notify Pending Bulletin Existence use case to notify
the writer.

Subscriber
The subscriber is the customer of the news agency. The subscriber receives
news bulletins from a specific News Service instance, such as the sports News
Service instance. For this, the subscriber needs to register with the news agency,
by triggering the Register for Approved Bulletin use case.

The service delivers all the news bulletins for the service registered for by the
subscriber when the news bulletins are approved by the editor. As described
below, the News Service executes the Push Approved Bulletin to notify the
subscriber client as to when the editor client approves the news bulletins.

News Service
The News Service is the heart of the application and enables the workflow
between the different actors. The News Serice core workflow has to notify the
editor and the subscribers at the appropriate time. It notifies the editor whenever
the writer submits a news bulletin by triggering the Notify Pending Bulletin
Existence use case. The News Service is aware of the editor because the editor
has registered with the News Service using the Register for Pending Bulletin
use case. Similarly, the New Service notifies the subscriber whenever the editor
approves the news bulletin using the Push Approved Bulletin use case. As
stated above, the subscriber registers for this notification using the Register for
Approved Bulletin. The key difference between the two use cases executed by
 Chapter 7. Case study: grid application enablement 121

the News Service is that the Notify Pending Bulletin Existence use case is a
pull notification and the Push Approved Bulletin use case is a push notification.
Using a pull notification, no bulletin is transferred to the editor during notification;
rather, the editor is notified of the existence of the pending news bulletins. The
editor subsequently has to retrieve the pending bulletins. On the other hand,
using a push notification, the News Service transmits the approved bulletin to the
subscriber along with the notification. The subscriber does not have to
subsequently retrieve the news bulletin.

7.2.2 Non-functional requirements
Non-functional requirements of an IT system or an application are quality
requirements or constraints of the system that must be satisfied. Unlike
functional requirements, which focus on the desired functionality of the system,
non-functional requirements address major operational areas of the system or
application and are specified in order to ensure the robustness of the system or
application. The analysis of non-functional requirements must be considered in a
real application, as shown in 6.3.2, “Non-functional requirements” on page 78.
For our application example, only the robustness and reliability of the bulletin
services are being considered.

7.2.3 Architecture overview
In this section, we will provide an overview of the architecture that was designed
to implement the requirements specified in earlier sections. We will explain the
architecture using an overview diagram. In addition, we will discuss the
architectural decisions which were taken. Figure 7-3 on page 123 shows an
overview of the application’s architecture.
122 Grid Services Programming and Application Enablement

Figure 7-3 Architecture overview

The following are the key architectural decisions:

1. The requirements are implemented as a distributed application using the grid
service. The key functionality of the application is encapsulated in a single
grid service. As shown in Figure 7-3, the shaded box in the center represents
the implementation of the single grid service. The various use cases specified
earlier for the administrator, writer, editor, and subscriber are implemented by
the single grid service. As will be described later, the service implementation
is deployed in a GT3 stand-alone container.

2. The user interface for the administrator is implemented by the administrator
client application. As shown in Figure 7-3 on page 123, the administrator

Bulletin Editor

submitMessageForApproval(String Message)

push notification of messages

Approved
Messages

SDE

Pending
Messages

SDE pull notification of pending message

find one or more
existing

BulletinService
instances

via instance id assigned
 by Admin Client

BulletinAppMesgOprImpl
Operation Provider

BulletinPenMesgOprImpl
Operation Provider

Bulletin Writer

getPendingMessages()

persist
bulletins to file
via lifecycle
callbacks

create instance
via factory and destroy instance

Bulletin Admin
Console

Bulletin Subscriber

Bulletin Service

 Register for Pending

Messages

Register for Approved message

Instances: ‘Sports’, ‘Weather‘, News’

submitApprovedMessages(String Message)
 Chapter 7. Case study: grid application enablement 123

client application communicates with the grid service server to implement the
use cases triggered by the administrator. The link between the administrator
client and the bulletin service depicts the communication between the client
and the server.

3. Similarly, the user interfaces for the writer, editor and subscriber are
implemented by the writer client, editor client, and subscriber client,
respectively. Just as in the case of the administrator client, the user interfaces
implement the triggering and execution of the appropriate actors and
communicate with the grid service implementation in providing the
functionality.

4. The administrator client will use the Factory of the bulletin service in creating
different instances of the bulletin service. One service instance will be created
for each bulletin topic. Hence, for three topics of Sports, Weather, and
Business News, three separate instances of the grid service will be created.

5. The grid service will utilize two Service Data Elements (SDEs) to store the
pending bulletins that are submitted by the writer and the approved bulletins
that are approved by the editor, respectively. The SDEs are shown in
Figure 7-3 on page 123 as two rounded rectangles inside the bulletin service.

6. The editor client and the subscriber will implement the Register for Pending
Bulletin and the Register for Approved Bulletin use cases, respectively,
by using the GT3 runtime. As shown in Figure 7-3 on page 123, the editor will
register for notification of the existence of new pending messages. The
subscriber will register for changes to the approved bulletin SDE.

7. The Notify Pending Bulletin Existence use case is triggered by the grid
service and is implemented by the editor client. The arrow from the service to
the editor client represents the communication in the implementation of the
use case. Similarly, the Push Approved Bulletin use case is triggered by the
grid service and implemented by the subscriber client (or bulletin client). The
arrow from the service to the bulletin client illustrates the push
communication.

8. The service operations to support the use cases for the writer and the editor
will be implemented in two separate operation providers, namely the Submit
Bulletin Operation Provider and the Approve Bulletin Operation
Provider, respectively. The operation providers are shown as two rectangles
inside the billeting service. The Submit Bulletin Operation Provider use
case will provide the implementation for submit message and the Approve
Bulletin Operation Provider use case will provide implementation for the
get pending bulletin and the approve bulletin.

9. In order to make the grid service robust, the pending bulletins will be
persisted to a non-volatile file system when the grid service is terminated.
Similarly, when the service instance is instantiated at the time of server
startup, the bulletins will be retrieved from the file system and populated in the
124 Grid Services Programming and Application Enablement

SDE. This feature is supported to fulfill the robustness non-functional
requirement. The life cycle callback feature of a grid service will be used to
implement this functionality. This is shown in Figure 7-3 on page 123 as an
oval inside the bulletin service.

The following table (Table 7-1) helps to match the method names, operation
names, and use case names.

Table 7-1 Method, operation and use case names

7.3 Case study: grid service specifying and coding
This part of the redbook focuses on specifying and coding the application.
Hence, this chapter will not focus on the steps and commands needed to
compile, test, and deploy the grid application. The main intention of this chapter
is to programmatically explain the various features of the grid services that have
been specified in the standards OGSA and OGSI, and further implemented in the
Globus Toolkit V3.

The application will be progressively built in four stages. At each stage, we will
introduce a sub-set of the grid service features and explore its usage and
considerations in building the application. Each subsequent stage will be built on
the previous phase and enhance it with additional features, and should follow the
complete development methodology for each phase.

Use case name Actor Name of method

Submit Bulletin writer submitMessageForApproval()

Retrieve Pending Bulletin editor getPendingMessages()

Approve Bulletin editor submitApprovedMessages()

Notify Pending Bulletin
Existence

service notifyChange()

Push Approved Bulletin service deliverNotification()
 Chapter 7. Case study: grid application enablement 125

7.4 Phase I: building the core News Service
In the first phase, we will start by building the core of the News Service
application. The essential elements of any grid service are the grid server and
the grid client. In our application, there is one grid service: Bulletin Service. The
grid server implements the business functionality and the grid client uses the
functionality provided by the server. Further, in order to manage the server, we
need an administration client. The administrator starts up and shuts down the
functionality made available by the server. Hence, we will implement the key use
cases for the administrator and the subscriber in addition to implementing the
required service server functionality.

Here, we will focus on the support of the two main actors specified in the
previous chapter, namely, the subscriber and the administrator. To support the
administrator, we will implement the create service and the destroy service use
case. We will support the subscriber by combining the two use cases (register for
approved bulletin and push approved bulletin) into a single use case (retrieve
bulletin). The retrieve bulletin use case will allow the subscriber to obtain a set of
messages by accessing the service.

We will now summarize the decisions specified in 7.2.3, “Architecture overview”
on page 122’ and which are relevant to this phase of the development. In this
phase, we will accomplish the following:

1. Encapsulate the core functionality in a single grid service, namely, the bulletin
service.

2. Implement the administrator user interface as a single administrator client
module.

3. Implement the subscriber user interface as a single subscriber client module.

4. Allow the administrator to create and destroy three instances of the service for
each of the three topics the news agency supports, namely, Sports, Weather,
and Business News.

5. Implement the application using the Java language and the GT3-provided
tools and runtime.

Support of the aforementioned functionality requires the use of the following
features of grid services:

1. The generation and development of the skeleton code comprised of the
server side service implementation, client side service implementation, server
side stub, and client side stub.

2. The use of the Factory interface of the grid service in the creation of the grid
service instances.
126 Grid Services Programming and Application Enablement

We will emphasize these grid service features when we illustrate the
implementation of the core News Service.

7.4.1 Development of server-side functionality
This section discusses the implementation of the server service, the bulletin
service.

Bulletin service definition
As specified earlier, the first step in building the bulletin service is the
specification of the service. We will explain the GWSDL in sections. Figure 7-4
on page 127 shows the first section of the specification of the bulletin service in
GWSDL. As shown, the name of the service, BulletinService, is specified first
along with the various required namespaces. The first namespace defines the
target namespace for the BulletinService. Types specific to the bulletin service
are stored in that namespace. The namespaces with OGSI, gwsdl, and sd tags
are specific to the various types defined for the grid services and must be
included. Similarly, the namespace with the xsd tag defines the XML schema of
the various elements used for the definition of Web services. The last
namespace specifies the namespace for the definition of SOAP messages.
Since SOAP bindings are being used, that namespace is required. Please refer
to Chapter 2, “Service Oriented Architecture” on page 5 for a detailed description
of the various elements within a WSDL file and in SOAP messages.

Figure 7-4 Bulletin service specification in GWSDL - part 1

Subsequent to the definition of the service name and namespaces, the data type
definitions used by the messages exchanged between the service requestor and
the service provider are specified in the types section. Figure 7-5 on page 128
shows the type definitions for our service.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BulletinService"
 targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:tns="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"
 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
 xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<import location="../../ogsi/ogsi.gwsdl"
namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>
 Chapter 7. Case study: grid application enablement 127

Figure 7-5 Bulletin service specification in GWSBL - part 2

Further, the various messages that are transferred between the service
requestor and service provider are described, including the parameters for the
messages. A message represents one interaction between the service requestor
and the service provider. Figure 7-6 on page 129 shows the message definition
for our service.

<types>
<xsd:schema targetNamespace="http://www.itso.ibm.com/namespaces/grid/Bulletin"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"

xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="submitMessageForApproval">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitMessageForApprovalResponse">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getPendingMessages">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getPendingMessagesResponse">
 <xsd:complexType>
<xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitApprovedMessages">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitApprovedMessagesResponse">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>
</types>
128 Grid Services Programming and Application Enablement

Figure 7-6 Bulletin service specification in GWSBL - part 3

Finally, the port type within the service is defined. A port type is a collection of
operations supported by the grid service. Figure 7-7 on page 130 shows the
definition of the port type for our service. The operations that are part of a port
type are enclosed with the port type section. Our example BulletinService
consists of one port type, namely, BulletinPortType.

<message name="SubmitForApprovalInputMessage">
 <part name="parameters" element="tns:submitMessageForApproval"/>
</message>
<message name="SubmitForApprovalOutputMessage">

<part name="parameters" element="tns:submitMessageForApprovalResponse"/>
</message>
<message name="GetPendingInputMessage">
 <part name="parameters" element="tns:getPendingMessages"/>
</message>
<message name="GetPendingOutputMessage">
 <part name="parameters" element="tns:getPendingMessagesResponse"/>
</message>
<message name="SubmitApprovedInputMessage">
 <part name="parameters" element="tns:submitApprovedMessages"/>
</message>
<message name="SubmitApprovedOutputMessage">
 <part name="parameters" element="tns:submitApprovedMessagesResponse"/>
</message>
 Chapter 7. Case study: grid application enablement 129

Figure 7-7 Bulletin service specification in GWSBL - part III

It should be noted that various extensions for the grid service are defined in this
section of the GWSDL with the gwsdl, ogsi, and sd tags. The namespaces for
these extensions are specified in the namespaces section of the specification, as
described in the beginning of this section. In order to be a grid service, our port
type must inherit from or extend the ogsi:GridService port type. Also, since our
service is a source of notifications to the clients of the service, specifically the
editor client and the subscriber client, the BulletinPortType also extends the
ogsi:NotificationSource interface. It should be noted that the extends attribute of
the port type is a grid service extension to Web services, and hence the
extension in GWSDL from the WSDL.

Our port type has three operations defined, namely, submitMessageForApproval,
getPendingMessages, and submitApprovedMessages. The input, output and fault
messages for the operations are also specified. The type of the fault message is
a grid service extension. Our port type also has two Service Data Elements,
namely PendingMessages, and ApprovedMessages. Service data are also grid
service extensions.

As mentioned earlier, the client and server stubs are generated from the service
specification file. Please refer to Chapter 4, “Grid services development” on
page 37 for details. Since the stubs are transparent to the developer, they will not
be shown or discussed here. Interested users are advised to look at the
~/Bulletin/common/ directory for the list of generated classes and interfaces and
the details of the code.

<gwsdl:portType name="BulletinPortType" extends="ogsi:GridService">
 <operation name="submitMessageForApproval">
 <input message="tns:SubmitForApprovalInputMessage"/>
 <output message="tns:SubmitForApprovalOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 <operation name="getPendingMessages">
 <input message="tns:GetPendingInputMessage"/>
 <output message="tns:GetPendingOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 <operation name="submitApprovedMessages">
 <input message="tns:SubmitApprovedInputMessage"/>
 <output message="tns:SubmitApprovedOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
</gwsdl:portType>
</definitions>
130 Grid Services Programming and Application Enablement

Server-side bulletin service implementation
Subsequent to the generation of the client- and server-side stubs, the server-side
functionality is implemented.

In order for a class to provide the implementation of one or more operation(s)
within the port type, the class must implement the OperationProvider Java
interface. The implementation of the OperationProvider interface has to be done
in addition to the implementation of the operation(s) of the port type. Figure 7-8
shows the OperationProvider interface. The implementation class must
implement the initialize() and getOperation() methods in addition to other
implementation methods.

Figure 7-8 OperationProvider interface

The initialize() method is called when the operation provider is added to the grid
service. The serviceBase argument specifies the service this provider is being
associated with. The getOperations() method is called during initialization when
the grid service needs to find out what operations are supported by this provider.
It must return an array of operation QNames as defined in the GWSDL.

In our example, we implement the operations in the BulletinOprImpl class. The
example implementation of the class is shown next. It should be noted that the
class provides the implementation of the initialize() and the getOperations()
methods. The class stores the reference to the grid service associated with this
operation provider when the initialize method is invoked by the runtime during the
initialization process. In this phase, we are not implementing any of the grid
service operations. In subsequent phases, we will build upon the skeleton code
developed in this phase and implement the methods.

package org.globus.ogsa;
import javax.xml.namespace.QName;

public interface OperationProvider {

public void initialize(GridServiceBase serviceBase)
 throws GridServiceException;
public QName[] getOperations();

}

 Chapter 7. Case study: grid application enablement 131

Figure 7-9 BulletinOprImpl class implementation

7.4.2 Administration client implementation
In this section, we will implement the administration client. As mentioned before,
the admin client is responsible for creating and destroying the instances of the
bulletin grid service. Figure 7-10 on page 133 shows the BulletinAdminConsole
class, which implements the administration client console. The class takes the
GSH of the factory that creates the bulletin service. Please refer to 5.2, “Factory”
on page 60 for a description of GSH and GSR.

package com.ibm.itso.grid.gt3.bulletin.server;

import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;

import javax.xml.namespace.QName;

public class BulletinOprImpl implements OperationProvider {
// Operation provider properties
private static final QName[] operations = new QName[]{new QName("", "*")};
private GridServiceBase base;

public void initialize(GridServiceBase base) throws GridServiceException {
this.base = base;

}

public QName[] getOperations() {
return operations;

}

}

132 Grid Services Programming and Application Enablement

Figure 7-10 Implementation of the bulletin administrator console

As shown in Figure 7-10, the code lets the user specify the creation or
destruction of the Bulletin Service instances. The user is asked to provide the
name of the instance to be created or destroyed along with the option c or d for
creation and deletion, respectively. The user exits the program by entering the q
option.

Figure 7-11 on page 134 is the continuation of the Bulletin Administrator
Console. The console has to obtain the Grid Service Reference (GSR) of the
factory before it can create any object. The GSR of the factory is obtained from
the GSH of the factory, provided by the user during console invocation. As shown
in the code below, the URL of the GSH is first obtained. An instance of the
OGSIServiceGridLocator is created. This instance provides the locator service
and aids in obtaining the corresponding GSR for a given GSH. We create an

package com.ibm.itso.grid.gt3.bulletin.client;

import org.globus.ogsa.utils.GridServiceFactory;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.gridforum.ogsi.OGSIServiceGridLocator;

import java.net.URL;
import java.io.*;
import java.util.*;

public class BulletinAdminConsole {
public static void main(String[] args) {

String addr = new String();
if(args.length != 1) {

System.out.println("Usage: java
com.ibm.itso.grid.gt3.bulletin.client.BulletinAdminConsole <GSH>");

//addr = new
String("http://10.3.5.84:8080/ogsa/services/sample/bulletin/BulletinFactory");

return;
} else {

addr = args[0];
}

System.out.println("WELCOME TO BULLETIN ADMIN CONSOLE...");
System.out.println("Command Help...");
System.out.println(">c <instance name> : to create a instance");
System.out.println(">d <instance name> : to destroy a instance");
System.out.println(">q : to exit this program");
System.out.println();
 Chapter 7. Case study: grid application enablement 133

instance of the GridServiceFactory. This factory instance is subsequently used
for creating bulletin grid service instances.

Figure 7-11 Implementation of the bulletin administrator console - continued

Figure 7-11 is the continuation of the bulletin administrator console. The key lines
of code are highlighted. As can be seen in the figure, if the user enters the option
to create the instance and passes the name of the instance to be created, the
instance of the bulletin service is created by invoking the createService() method
on the grid service factory instance. When an instance is created, the
createService() returns the GSH of the created instance. We store the GSH of
the created instances in the instanceStore hash table. The created instances are
hashed based on the names of the instances.

When the user requests the destruction of the instance, he/she enters the option
d along with the name of the service instance. The code looks up the GSH of the
Bulletin service instance to be deleted from the instanceStore hash table based
on the name of the instance. Subsequently, the GSR of the instance to be
deleted is obtained by invoking the getGridServicePort() method on the
ogsiServiceGridLocator instance. Once the reference to the instance is obtained,
it is destroyed by invoking the destroy() method. The Admin console destroys all
the instances that were created by it when the user chooses the q option.

In summary, the bulletin administrator console code discussed above illustrates
the implementation of the following features of grid services:

1. The mechanism to obtain a GSR once a GSH has been provided.

2. The creation of a grid service instance using the factory of the grid service.

try{
//Get command-line argument
URL GSH = new java.net.URL(addr);

//Get a reference to the Bulletin Service Factory
OGSIServiceGridLocator ogsiServiceGridLocator = new OGSIServiceGridLocator();
Factory factory = ogsiServiceGridLocator.getFactoryPort(GSH);
GridServiceFactory gridServiceFactory = new GridServiceFactory(factory);

BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in));
Hashtable instanceStore = new Hashtable();

System.out.println("please input command...");
134 Grid Services Programming and Application Enablement

3. The creation of multiple instances of the same grid service. This is contrary to
the Web service implementation: different instances of the same Web service
cannot be created.

4. The mechanism to destroy the grid service instance.

7.4.3 Subscriber client implementation
In this section, we will implement the skeleton of the bulletin subscriber client.
Since we have not implemented any of the grid service operations as of yet in
this phase, we will not show the invocation of the service operations by the
bulletin subscriber client. However, we will focus on the location of the grid
service instance by the bulletin subscriber client. Figure 7-12 on page 136 shows
the implementation of the bulletin subscriber client.

As shown in Figure 7-12 on page 136, the subscriber client functionality is
encapsulated in the run() method. When the subscriber client is invoked, the
address of the bulletin service and the name(s) of the service instances to which
it is subscribing are passed as arguments. The key functionality is highlighted in
bold. The implementation constructs the GSRs of the instance name(s) passed,
in URL form, by concatenating each of the instance names with the address of
the bulletin service.
 Chapter 7. Case study: grid application enablement 135

Figure 7-12 Bulletin subscriber client Implementaiton

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;

import java.net.URL;

public class BulletinSubscriber {

BulletinPortType[] bulletins;

public static final void main(String[] args) {
BulletinSubscriber bs = new BulletinSubscriber();
bs.run(args);

}

private void run(String[] args) {
// The base GSH and the instance names will be informed

// as command-line arguments
String baseGSH = args[0];

// Build service instance references
int instanceCount = args.length-1;
BulletinPortType[] bulletins = new BulletinPortType[instanceCount];

try {
String sinks[] = new String[instanceCount];

for (int i=0; i<instanceCount; i++) {
String GSHstr = baseGSH+args[1+i];
URL GSH = new URL(GSHstr);
BulletinServiceGridLocator bulletinGL = new BulletinServiceGridLocator();
bulletins[i] = bulletinGL.getBulletinServicePort(GSH);

};

// Now we can issue any call to the service instances
// referenced by the port types in the "bulletins[]" array

System.out.println("Type any key to exit.");
System.in.read();

} catch (Exception e) {
e.printStackTrace();

}
}

}

136 Grid Services Programming and Application Enablement

After the creation of the GSH of the bulletin service instances, the references are
resolved into GSRs. An instance of the BulletinServiceGridLocator instance
class aids in resolving GSHs into GSRs. As shown in the code, the subscriber
client creates an instance of the BulletinServiceGridLocator class and invokes
the getBulletinServicePort() method on it by passing in the GSH. Obtaining a
reference to the bulletin services instances is critical to the support of other
subscriber client functionality. In subsequent phases, we will expand the
subscriber implementation.

7.5 Phase II: operationalizing the News Service with
news writer and subscriber notification of news

In the second phase, we will expand the core News Service implementation of
the first phase. As we have described in the previous chapter, the News Service
has writers who scout for and submit news to the news organization on various
topics. Also, in this phase, the subscriber will be allowed to register for the news
bulletins and will be notified of the news bulletins as and when they are written by
the writer. Hence, we will implement the use case for supporting the writer and
the subscriber in addition to implementing the required service server
functionality.

Here, we will focus on supporting the two main actors specified in the previous
chapter, namely, the writer and the subscriber. To support the writer, we will
implement the Submit Bulletin use case. We will support the subscriber by
supporting the Register for Approved Bulletin and Push Approved Bulletin
use cases. As we had specified in the architectural decisions in the previous
chapter, we will implement the writer client interface as a single writer client
module. Also, we will implement the submitApprovedMessages operation in a
separate operation provider class within the server to support the writer. It should
be noted that in this phase, there is no separate approval authority and the writer
both submits the bulletin and approves the message by invoking the
submitApprovedMessages operation.

Support of the aforementioned functionality requires the use of the following
features of grid services:

1. The use of the Service Data Element (SDE) in providing state for the grid
service.

2. The implementation of the operation provider class in providing the grid
service operation.

3. The implementation of the push notification in supporting the notification of
state changes of the SDE.
 Chapter 7. Case study: grid application enablement 137

7.5.1 Enhancing server-side functionality
In this section, we will augment the skeleton server-side code developed in the
previous phase. In particular, we will implement the SDE that carries approved
message notifications to the clients and the submitApprovedMessages operation.
In the previous phase, we had introduced the BulletinOprImpl class which
implemented the OperationProvider interface. We had also stated that this class
will be used to provide the implementation of the operations of the grid service.
We illustrate the code for the BulletinOprImpl class for this phase in a set of
figures shown next. Additions to the code from the previous phase are
highlighted in bold.

Bulletin service definition
The introduction of Service Data Elements implies some important changes in
the GWSDL file. The excerpt below was taken from the new version of the
GWSDL file and the changes are shown in bold.

Figure 7-13 Segment of the revised GWSDL showing changes in namespaces and import statements

As can be seen in Figure 7-13, two namespaces have been added to the
attributes section of the definitions tag. The first namespace refers to the set of
definitions required for declaring Service Data Elements. As a matter of fact, this
namespace must always be declared when Service Data Elements are defined.

The second namespace refers to a data type that has been introduced for storing
the service data itself. When defining service data, its data type must be declared

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BulletinService"
 targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:tns="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"
 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
 xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData"
 xmlns:data="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<import location="../../ogsi/ogsi.gwsdl"
namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

<import location="MessageDataType.xsd"
namespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"/>

<types>
...
138 Grid Services Programming and Application Enablement

as well. The namespace of this data structure and its binding tag are arbitrary; in
this case, we have chosen to define it at the same namespace as the service
itself and to bind it to the tag data.

The definition of the data structure itself is contained in the file named
MessageDataType.xsd, which is referred to in the new (and highlighted) import
statement. The contents of this file are presented in Figure 7-14.

Figure 7-14 Message data type XML data specification

As cen be seen, the MessageDataType.xsd file defines a data structure called
MessageData which contains a single String. This data structure will be used for
storing the service data which, in this case, will contain only messages to be
delivered to the subscriber clients. Including these definitions in our GWSDL file
causes a Java Bean class to be automatically generated along with the stubs.
This Java Bean class will then be available for the coding of the service data, as
we will see shortly.

Figure 7-15 on page 140 shows another extract of the GWSD file, highlighting
the service data declaration.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MessageData"

targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
xmlns:tns="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<schema targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"

attributeFormDefault="qualified"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="MessageDataType">
<sequence>

<element name="message" type="string"/>
</sequence>

</complexType>

</schema>
</wsdl:types>

</wsdl:definitions>
 Chapter 7. Case study: grid application enablement 139

Figure 7-15 Segment of the revised GWSDL showing the addition of service data declaration

As shown, the type for this service data is referred to as data:MessageDataType.
The data tag is bound to the namespace defined for our data structure, and
MessageDataType is its name. The several additional fields define the properties
of this service data.

Once the GWSDL file has been updated, we can generate the stubs and move to
the implementation of the service and its clients.

Implementation of the BulletinOprImpl class
As will be shown shortly, the BulletinOprImpl class additionally implements the
GridServiceCallback interface (Figure 7-16 shows the definition of this interface).
The interface defines callback methods that have to be implemented by grid
services that need a more accurate control of their life cycle. These methods are
invoked by the container runtime at the appropriate life cycle moment of the grid
service.

Figure 7-16 Definition of the GridServiceCallback interface

<gwsdl:portType name="BulletinPortType" extends="ogsi:GridService ogsi:NotificationSource">
 <operation name="...
...
 </operation>
 <sd:serviceData name="ApprovedMessages"
 type="data:MessageDataType"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false">
 </sd:serviceData>
</gwsdl:portType>

package org.globus.ogsa;
public interface GridServiceCallback {
public void preCreate(GridServiceBase base) throws GridServiceException;
public void postCreate(GridContext context) throws GridServiceException;
public void activate(GridContext context) throws GridServiceException;
public void deactivate(GridContext context) throws GridServiceException;
public void preDestroy(GridContext context) throws GridServiceException;
}

140 Grid Services Programming and Application Enablement

The preCreate() method is invoked when the service instance is being created by
the runtime and before it is fully created and initialized. The postCreate() is called
after the service instance has been created and all of its configuration has been
set up. The activate() method is called when a service becomes active according
to the container’s policy (a service is always activated before any of its methods
are called). The deactivate() method is also a container’s managed call which is
normally fired in order to decrease the amount of resources taken by the grid
server (memory, data-base connections, etc.). A deactivated service is, however,
still discoverable by clients. The preDestroy() method is called just before a
service is destroyed. After this call is made, the framework removes all
knowledge about the service, so it is a good place to clean up service resources
and store its state in persistent storage systems. Note that this call can be
triggered by a client-initiated destroy call, as well as by a framework-initiated soft
state time-out. It should also be noted that the parameter for all method calls,
except preCreate(), is GridContext. The parameter for the preCreate() method is
GridServiceBase. This is because the grid context for the service instance is not
established until the instance is fully created and initialized.

Figure 7-17 on page 142 shows the first segment of the BulletinOprImpl class
implementation. As can be seen from the figure, several new import statements
are added. The first highlighted import statement imports the implementation of
the MessageDataType class. This class is auto-generated from the GWSDL and
provides the implementation of the class that encapsulates the bulletin message
submitted by the writer. Similarly, definitions of ServiceData, GridContext, and
GridServiceCallback are imported from the org.globus.ogsa package. The
definition of the RemoteException is also imported. The use of these definitions
will be evident as we provide further explanations.
 Chapter 7. Case study: grid application enablement 141

Figure 7-17 Implementation of the BulletinOprImpl class

As can be seen from Figure 7-17, the BulletinOprImpl additionally implements
the GridServiceCallback interface. Several additional private variables are
defined in this class. The myMain maintains a reference to the instance of the
MainSrvImpl class. As we will illustrate shortly, this instance is created and
maintained to obtain the system-defined Service Data Elements of the bulletin
service. In particular, in our example, we need to access the name of the bulletin
instance within the implementation of the service operations. The instance name
is stored within a Service Data Element defined for all grid services and
maintained by the container at runtime. The mdt object is an instance of a Java
bean that has been created to store all the data that is sent along with the
notifications. More details on this class will be given later. The instanceName
variable maintains the name of the instance and the approvedMessageSDE
maintains a reference to the Service Data Element that is defined for storing the
bulletin messages submitted by the writer.

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridContext;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;
import org.globus.ogsa.GridServiceCallback;
import javax.xml.namespace.QName;
import java.rmi.RemoteException;

public class BulletinOprImpl implements OperationProvider, GridServiceCallback {

private MainSrvImpl myMain;
private MessageDataType mdt;
private String instanceName;
private ServiceData approvedMessagesSDE;

// Operation provider properties
private static final QName[] operations = new QName[]{new QName("", "*")};
private GridServiceBase base;
142 Grid Services Programming and Application Enablement

Figure 7-18 shows the continuation of the implementation of the BulletinOprImpl
class. Additional code developed in this phase is highlighted.

Figure 7-18 Implementation of the BulletinOprImpl class - continued

As can be seen from Figure 7-18, the BulletinOprImpl class implements a
constructor method where an instance of the MainSrvImpl class is passed. Later
in this section, we will present the implementation of the MainSrvImpl class and
the creation of the BulletinOprImpl instance. It will suffice for now to note that an
instance of the MainSrvImpl class provides access to metadata of the bulletin
service instance, including the name of the service instance.

public void initialize(GridServiceBase base) throws GridServiceException {
this.base = base;

}
public QName[] getOperations() {
return operations;

}

BulletinOprImpl(MainSrvImpl main) {
myMain = main;

}
public void preCreate(GridServiceBase arg0) throws GridServiceException {

// Do nothing
}

 public void postCreate(GridContext arg0) throws GridServiceException {
instanceName = myMain.getInstanceName();
System.out.println("Instance "+instanceName+" created.");

approvedMessagesSDE = base.getServiceDataSet().create("ApprovedMessages");
mdt = new MessageDataType();
approvedMessagesSDE.setValue(mdt);
mdt.setMessage("Initialized");
base.getServiceDataSet().add(approvedMessagesSDE);

}

public void activate(GridContext arg0) throws GridServiceException {
// Do nothing

}
public void deactivate(GridContext arg0) throws GridServiceException {

// Do nothing
}

public void preDestroy(GridContext arg0) throws GridServiceException {
// Do nothing

}

 Chapter 7. Case study: grid application enablement 143

The BulletinOprImpl class also implements all the methods introduced in the
GridServiceCallback interface. All the callback methods except postCreate() are
empty. The postCreate() method performs two major tasks. First, it obtains and
maintains the name of the service instance. Second, it creates and initializes the
Service Data Element (SDE) for storing the messages that are submitted by the
writer clients. Since this method is invoked right after the bulletin grid service
instance is created and before any operation on it is invoked by the client, it is the
most suitable place to perform the initialization of the SDE.

As can be seen in the implementation of the postCreate() method, the name of
the instance is obtained by invoking the getInstanceName() method on the
MainSrvImpl instance and this value is stored in a private String. Additionally, the
Service Data Elements created in this method must conform to the previously
generated GWSDL specification; as can be seen in the implementation, SDEs
are created by the Service Data Set, which is in turn acquired from the
GridServiceBase object, and must have the same names declared in the
GWSDL file. In phase two, all bulletin messages submitted by the writer are
automatically approved to be published to the subscribers.

Subsequent to the creation of the SDE structure, an instance of the
MessageDataType is created and associated with the SDE by invoking the
setValue() method on the SDE. At this point, the MessageDataType instance is a
place holder for placing the messages that will be submitted by the writer. The
SDE created is added into the service data set by invoking the add() method on it
and by passing the newly created SDE. The runtime manages the SDE.

Figure 7-19 shows the final segment of the implementation of the BulletinOprImpl
class. The submitApprovedMessages() method is the implementation of the
submitApprovedMessages operation which was defined for the bulletin service in
the GWSDL described earlier in this chapter. When the writer client invokes the
operation, the server runtime will call this method in the BulletinOprImpl class.

Figure 7-19 Implementation of the BulletinOprImpl class - continued

As shown in Figure 7-19, the submitApprovedMessages() method receives a
string with the bulletin message. The implementation of the method performs two
main tasks. First, it sets the message in the MessageDataType placeholder in

public void submitApprovedMessages(java.lang.String msgs) throws RemoteException {
System.out.println("Instance "+instanceName+" received message: " +msgs);
mdt.setMessage(instanceName+": "+msgs);
approvedMessagesSDE.notifyChange();

}
}

144 Grid Services Programming and Application Enablement

the SDE by invoking the setMessage() method. This places the writer’s message
in the approvedMessagesSDE. Second, it triggers the notification mechanism
since the state of the approvedMessageSDE has been modified. The notification
mechanism is triggered by invoking the notifyChange() method on the SDE being
modified. When notifyChange() is invoked, the runtime notifies all the subscribers
who have registered an interest in changes to the SDE that the SDE has been
modified.

Implementation of the MainSrvImpl class
In the previous section, the methods of the BulletinOprImpl class maintained and
used an instance of the MainSrvimpl class. The instance was mainly used to
obtain the name of the bulletin grid service instance. In this section, we will
illustrate the implementation of the MainSrvImpl class.

During the first phase shown in 7.4.2, “Administration client implementation” on
page 132, the implementation of the administrator client was discussed. The
administrator client created instances of the bulletin service by providing the
name of the service instance. The name of the instance becomes part of the
metadata of the service instance after creation. The GridServiceImpl class
provided at runtime maintains all the metadata in a set of standard Service Data
Elements. Hence, in order to obtain the instance name, we implement a new
class called MainSrvImpl which inherits from the GridServiceImpl class and
provides a public method that encapsulates the code to obtain the name of the
instance. Figure 7-20 on page 146 shows the implementation of the MainSrvImpl
class.
 Chapter 7. Case study: grid application enablement 145

Figure 7-20 Implementation of the MainSrvImpl class

package com.ibm.itso.grid.gt3.bulletin.server;

import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.impl.ogsi.GridServiceImpl;
import org.gridforum.ogsi.LocatorType;
import javax.xml.namespace.QName;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.ServiceDataSet;

public class MainSrvImpl extends GridServiceImpl {

 public MainSrvImpl() throws GridServiceException {
 super("Bulletin Service Implementation");
 this.addOperationProvider(new BulletinOprImpl(this));
 }

public String getInstanceName() {
 String Space = "http://www.gridforum.org/namespaces/2003/03/OGSI";
 try {
 ServiceDataSet dataset = this.getServiceDataSet();
 QName handle = new QName(Space,"gridServiceHandle");
 QName factoryLocator = new QName(Space,"factoryLocator");
 ServiceData dataOfHandle = dataset.get(handle);
 ServiceData dataOfFactor = dataset.get(factoryLocator);

 String handleS = dataOfHandle.getValue().toString();

 LocatorType locatortype = (LocatorType)dataOfFactor.getValue();
 String factorS= (locatortype.getHandle()[0]).getValue().toString();

 int lastPosition = handleS.lastIndexOf("/");
 if (factorS.equalsIgnoreCase(handleS.substring(0,lastPosition))) {
 String InstanceName = handleS.substring(lastPosition +1,
handleS.length());
 System.out.println("Get instance Name:"+InstanceName);
 return InstanceName;
 }
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return null;
 }
}

146 Grid Services Programming and Application Enablement

As shown in Figure 7-20 on page 146, the MainSrvImpl class provides two public
methods. The first method is the constructor, which is invoked when an instance
of MainSrvImpl is created. The second is the getInstanceName() method, which
returns a string containing the name of the instance. Whenever the client of the
bulletin service (in our case the administrator client) creates the instance of the
bulletin service, the container creates an instance of the MainSrvI.mpl class.

The constructor of the MainSrvImpl class first invokes the constructor of the
GridServiceImpl class by calling super(). Subsequently, it creates an instance of
the BulletinOprImpl and adds it to its the metadata by invoking the
addOperationProvider() method. It should be noted that the
addOperationProvider() method is inherited by the MainSrvImpl class from the
GridServiceImpl class. In addition, the reference to the MainSrvImpl instance is
passed to the BulletinOprImpl instance during its creation.

The getInstanceName() method derives the name of the instance from the
metadata stored in the service data set. Specifically, it derives the instance name
from the string representing the two key Service Data Elements, namely, the
gridServicehandle and the factoryLocator. The service data set is first obtained
by invoking the getServiceDataSet() method. Subsequently, individual Service
Data Elements for the gridServicehandle and the factoryLocator are obtained
from the service data set by invoking the get() method and passing the QName
for them. Finally, their String representation is obtained and the instance name is
derived by parsing it out of the gridServiceHandle string.

In summary, in this section we have illustrated the following key mechanisms:

1. The implementation of the BulletinOprImpl class for supporting the
submitApprovedMessages operation of the bulletin grid service.

2. The creation and use of the Service Data Element (SDE) to store the
message submitted by the writer.

3. The mechanism to fire notifications when a new bulletin message is stored in
the SDE.

4. The implementation of the MainSrcImpl class to obtain the name of the
instance.

7.5.2 Writer client implementation
In this section, we will implement the writer client. As mentioned previously, the
writer client provides a user interface for the writer to submit his/her bulletin
messages. The writer client is a client of the bulletin service whose specification
was discussed in the previous section. The writer can submit bulletin messages
to any of the instances of the bulletin service that have been created by the
administrator client and, as was shown in the previous phase, one instance of
 Chapter 7. Case study: grid application enablement 147

the bulletin service is created for each of the topics chosen. The topic is stored
as the name of the service instance. Examples of topics are Business News,
Weather, and Sports.

Figure 7-21 shows the first segment of the implementation of the writer client.
The implementation of the writer client is provided by the class BulletinWriter.
The various import statements are shown in Figure 7-21. As with the
implementation in other clients previously shown, the BulletinServiceGridLocator
class aids in resolving the GSH into a GSR for a given bulletin grid service
instance. A variable of BulletinPortType maintains the client reference to the
bulletin grid service instance. The use of other imports will be obvious as we
show more of the implementation.

Figure 7-21 Implementation of the BulletinWriter class

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.List;
import java.util.ArrayList;
148 Grid Services Programming and Application Enablement

Figure 7-22 Implementation of the BulletinWriter class - continued

public class BulletinWriter {
public static final void main(String[] args) {

// The base GSH and the instance names will be informed
// as command-line arguments
String baseGSH = args[0];
// Build service instance references
int instanceCount = args.length-1;
BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
List instanceNames = new ArrayList(instanceCount);
try {

for (int i=0; i<instanceCount; i++) {
String GSHstr = baseGSH+"/"+args[1+i];
URL GSH = new URL(GSHstr);
BulletinServiceGridLocator bulletinGL = new BulletinServiceGridLocator();
bulletins[i] = bulletinGL.getBulletinServicePort(GSH);
instanceNames.add(args[i+1]);

};
boolean go = true;
while (go) {

BufferedReader br
 = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter the type of message you want to submit");
String instanceName = br.readLine();
int instanceIndex = instanceNames.indexOf(instanceName);
if (instanceIndex == -1) {

System.out.println("There isn't any service instance named "+instanceName);
} else {

System.out.println("Enter the message");
String message = br.readLine();

bulletins[instanceIndex].submitApprovedMessages(message);
}
System.out.println("Do you want to submit another message (y/n) ?");
char key = Character.toLowerCase((char) br.read());
if (key != 'y') {

go = false;
}

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

 Chapter 7. Case study: grid application enablement 149

Figure 7-21 on page 148 is the continuation of the WriterBulletin class
implementation. The WriterBulletin receives the base GSH of the bulletin grid
service instances as the first argument. The name of all the topics that the News
Service is providing service for and hence the writer can submit messages to are
passed as subsequent arguments. As a first step, the WriterBulletin generates
the GSHs of all the relevant bulletin grid service instances based on the
argument data. Subsequently, it resolves them into GSRs and maintains these
references for future use. The bulletins array is used to store the GSRs. The
names of the instances or the news topics are stored in the instanceNames array
list. The key lines of code which generate each of the GSH and resolve them into
GSRs are highlighted. An instance of BulletinServiceGridLocator is created and
this aids in the resolution of the GSH. The getBulletinServicePort() method is
invoked on the locator and the GSH is passed for resolution. The method returns
the corresponding GSR of a bulletin grid service instance.

After obtaining the references of the bulletin grid service instances, the
WriterBulletin allows the writer to interactively submit messages on the various
topics. The implementation allows the writer to first enter the topic of the
message followed by the news bulletin message itself. It checks the topic name
entered to ensure that the topic corresponds to one of the bulletin service
instances present in the server. If the topic is indeed among the ones present in
the server, the user is allowed to enter the message. The message is submitted
by invocation of the submitApprovedMessages operation on the corresponding
bulletin grid service instance. The key line of code performing the service
invocation is highlighted in bold. The writer is allowed to continuously submit
messages until he/she decides to quit the writer client application.

7.5.3 Enhancing the subscriber client implementation
In this section, we will expand the subscriber client implementation from phase
one to allow the subscriber to be notified of the news bulletins that are submitted
by the writer. In phase one, the subscriber client, implemented by class
BulletinSubscriber, initialized and obtained references to the various bulletin
service instances. In the previous sub-sections of this phase, the writer
submitted the messages to the appropriate bulletin service instance. Also, the
implementation of submitApprovedMessages at the server triggered the
notification of changes to the SDE when a new bulletin message was submitted
by the writer and stored in the SDE. In order for the subscriber to be notified of
the messages, it must register for the notification. Thus, when the server triggers
the notification, the runtime delivers the added messages to the entity that
registered for it, namely to the subscriber.

Figure 7-23 on page 151 shows the first segment of the BulletinSubscriber client
which implements the subscriber client. The newly added code in this phase is
highlighted. The use of the MessageDataType for the various messages is the
150 Grid Services Programming and Application Enablement

same as explained previously. The imports from the org.globus.ogsa package
provide the runtime functionality needed to support the registration and delivery
of the notification, as will become evident shortly. The use of other imports is
similar to that of other implementations explained earlier.

Figure 7-23 Implementation of the BulletinSubscriber class

As can be seen in Figure 7-23, the BulletinSubscriber class in this phase
additionally extends the ServicePropertiesImpl class and implements the
NotificationSinkCallback interface. In order to be notified and receive the
notification messages, the BulletinSubscribe class must implement the
NotificationSinkCallback interface and extend the ServicePropertiesImpl class.
Briefly speaking, this class provides the basic functionality that a client needs to
be able to receive notifications (such as a NotificationManager object). The
instanceNames variable maintains the list of names of bulletin service instances
or the news topics that the subscriber is interested in. As was explained in the

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.utils.AnyHelper;
import org.globus.ogsa.NotificationSinkCallback;
import org.globus.ogsa.impl.core.service.ServicePropertiesImpl;
import org.globus.ogsa.client.managers.NotificationSinkManager;

import org.gridforum.ogsi.HandleType;
import org.gridforum.ogsi.ExtensibilityType;
import org.gridforum.ogsi.ServiceDataValuesType;

import java.net.URL;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ArrayList;
public class BulletinSubscriber extends ServicePropertiesImpl implements
NotificationSinkCallback {

List instanceNames;
BulletinPortType[] bulletins;

public static final void main(String[] args) {
BulletinSubscriber bs = new BulletinSubscriber();
bs.run(args);

}

 Chapter 7. Case study: grid application enablement 151

earlier phase, the names of the various news topics are provided as argument
values when the BulletinSubscriber is started.

Figure 7-24 on page 153 shows the continuation of the implementation of the
BulletinSubscriber class. In addition to creating the GSH for the bulletin grid
service instances and resolving their GSRs as was done in the previous phase,
the implementation of the run() method also maintains a list of names of the
bulletin service instances in the instanceNames variable.

In order to receive the messages that are stored in the ApprovedMessages SDE
of the bulletin grid service instance, the subscriber client has to register for the
notifications. This registration is accomplished by adding a listener to the SDE.
As can be seen in Figure 7-24 on page 153, this is accomplished with the aid of
the NotificationSinkManager instance. This is obtained by calling the
getManager() static method of the NotificationSinkManager class. It returns the
singleton NotificationSinkManager instance. The listening process is started by
invoking the startListening() method on the NotificationSinkManager instance
and passing the identifier of the waiting thread.

Finally, the listener is added to the SDE by invoking the addListner() method on
the NotificationSinkManager instance. As shown in the figure, the name of the
SDE, the handle to the grid service instance on which the listening is to be
performed and the pointer to the NotificationSinkCallback have be to be passed
along with the method invocation. In our case, the SDE is ApprovedMessages
and the grid service instance is one of the bulletin grid service instances. Since
the BulletinSubscriber class implements the NotificationSinkCallback interface
and provides the implementation of the deliverNotification() callback method, as
shown later, its reference can be passed to the addListner() method. It should be
noted that addListner() is invoked inside the for loop and is invoked once for each
of the bulletin grid service instances. Further, since the same reference of the
NotificationSinkCallback instance ‘this’ is passed in with multiple invocations of
the addListner, the deliverNotification() method of this instance will receive
notifications from the SDEs of multiple bulletin service instances. After adding
the listeners, the implementation of the run() method waits for user input before
exiting.
152 Grid Services Programming and Application Enablement

Figure 7-24 Implementation of the BulletinSubscriber class - continued

private void run(String[] args) {

// The base GSH and the instance names will be informed
// as command-line arguments
String baseGSH = args[0];

// Build service instance references
int instanceCount = args.length-1;
BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
instanceNames = new ArrayList(instanceCount);

try {
NotificationSinkManager notifManager = NotificationSinkManager.getManager();
String sinks[] = new String[instanceCount];

for (int i=0; i<instanceCount; i++) {
String instanceName = args[i+1];
String GSHstr = baseGSH+"/"+instanceName;
URL GSH = new URL(GSHstr);
BulletinServiceGridLocator bulletinGL = new BulletinServiceGridLocator();
bulletins[i] = bulletinGL.getBulletinServicePort(GSH);

notifManager.startListening(NotificationSinkManager.MAIN_THREAD);
sinks[i] = notifManager.addListener("ApprovedMessages", null, new

HandleType(GSHstr), this);

instanceNames.add(instanceName);
System.out.println("Subscribed to the \""+instanceName+"\" instance.");

};

System.out.println("Type any key to exit.");
System.in.read();

// Stop listening
for (int i=0; i<instanceCount; i++) {

notifManager.removeListener(sinks[i]);
}

notifManager.stopListening();
System.out.println("Not listening anymore!");

} catch (Exception e) {
e.printStackTrace();

}
}

 Chapter 7. Case study: grid application enablement 153

As shown in Figure 7-24 on page 153, while exiting, the run() method removes
the listeners and stops listening for the notifications. When a listener is added, a
handle to the listener is returned by the runtime. It is stored in the sinks array.
The listener is removed by invoking the removeListner() method on the
NotificationSinkManager and by passing the handle that was obtained while
adding the listener. The listening is stopped by invoking the stopListening()
method on the NotificationSinkManager.

Whenever a bulletin message is submitted by the writer, the server triggers a
change notification. The listener detects the notification event and the notification
is delivered to the class implementing the NotificationSinkCallback interface. As
shown above, in our example the BulletinSubscriber class itself implements the
NotificationSinkCallback interface, which contains the deliverNotification()
method. Figure 7-25 shows the implementation of this method.

Figure 7-25 Implementation of the BulletinSubscriber class - continued

As shown in Figure 7-25, when deliverNotification() is called, the service data is
passed in the any variable. The method extracts the notification data from the
service data and presents it to the Subscriber. This is a push notification whereby
the service data is pushed to the subscriber rather than the subscriber merely
being informed of the change in service data and having to fetch or pull the data
from the bulletin service. The static methods of the AnyHelper class provide the
utility functions needed for extracting the service data and the bulletin message
from the service data. The getAsServiceDatavalues() method extracts the
service data from the incoming any variable. The getAsSingleObject() obtains
the message of the MessageDataType class from the service data. The method
is passed the class object of the message along with service data.

7.6 Phase III: incorporating workflow and approval by
editor

In the third phase, we will expand the News Service implementation of the
second phase, incorporating a workflow within the News Service. In phase two,

public void deliverNotification(ExtensibilityType any) throws RemoteException {
ServiceDataValuesType serviceData = AnyHelper.getAsServiceDataValues(any);
MessageDataType mdt = (MessageDataType) AnyHelper.getAsSingleObject(serviceData,

MessageDataType.class);

System.out.println("New message received.\n"+mdt.getMessage());
}

}

154 Grid Services Programming and Application Enablement

any message that was submitted by the writer was immediately made available
to the subscriber via push notification. In this phase, we introduce an additional
actor, the editor, who is responsible for approving the news bulletin messages
before they are pushed to the subscribers. Hence, any messages that are
submitted by the writer will be held pending until the editor approves them. Only
after a message has been approved by the editor will it be pushed to the
subscriber.

Here we will focus on supporting the use case(s) related to the editor. We will
implement the Register for Pending Bulletin, Retrieve Pending Bulletin,
and Approve Bulletin use cases. In addition, we will support the Notify Pending
Bulletin Existence use case which the News Service itself triggers. Thus, the
writer will register for pending messages that are submitted by the writer. The
bulletin service will notify the editor of the existence of pending bulletin news
messages. The editor will pull or retrieve the pending bulletin messages from the
service instance(s) for revision, and will approve them or not. The approved
messages are pushed to the subscriber as in the second phase.

As we had specified in the architectural decisions in the previous chapter, the
following actions will take place:

1. Implement the editor user interface as a single editor client module.

2. Add a new service data to the bulletin service port type. The GWSDL file has
to be modified in the same manner as in the last phase, with the exception
that this additional service data will make use of the same data structure we
have already introduced for the ApprovedMessages Service Data Element.

3. Implement the bulletin grid service operations to be supported for the different
actors in separate operation provider classes. Thus, we will implement the
submitMessageForApproval operation in one operation provider, and
implement getPendingMessages and submitApprovedMessages operations in
another operation provider. The first class manages pending messages
whereas the second class manages approved messages.

4. Add an additional SDE to the bulletin service implementation called
PendingMessagesSDE.

5. The writer will be modified to invoke submitMessageForApproval operation
instead of the submitApprovedMessages as in the previous phase. The
ApprovedMessages SDE and the SubmitApprovedMessages already
implemented in the previous phase will be used by the editor client. All
approved messages submitted by the editor will be stored in the
ApprovedMessagesSDE.
 Chapter 7. Case study: grid application enablement 155

Support of the aforementioned functionality requires the following grid services
features:

1. The use of the multiple Service Data Element (SDE) in the same grid service.

2. The implementation of the multiple Operation Provider classes for the same
service.

3. The implementation of the Pull Notification in supporting the notification of
service state changes.

7.6.1 Enhancing the server side functionality
In this section, we will illustrate the code on the server side, with particular
emphasis on the changes and additions that were made to support the
functionality for the third phase. In particular, we will introduce two operation
provider classes, namely BulletinPenMesgOprImpl and
BulletinAppMesgOprImpl, replacing the BulletinOprImpl class that was
implemented in phase two. The BulletinPenMesgOprImpl class will implement
the getPendingMessages and the submitMessageForApproval operations. The
BulletinAppMesgOprImpl will implement the submitApprovedMessages operation.
In addition, we will show the modifications to the implementation of the
MainSrvImpl class. The constructor of the MainSrvImpl class in this phase will
create instances of the two operation provider classes instead of the one
operation provider class as in the previous phase. Further, we will create an
additional SDE, PendingMessagesSDE, which will be used to store messages
that are submitted by the writer. This is in addition to the ApprovedMessagesSDE
which was created in the previous phase. Unlike in the previous phase where it
was used for storing the messages submitted by the writer, in this phase it will be
used for storing the messages that are approved by the editor.

Implementation of the BulletinPenMesgOprImpl class
In this section, we will illustrate the implementation of the
BulletinPenMesgOprImpl class. As mentioned before, this class is one of the
operation provider classes of the bulletin grid service. It implements the
getPendingMessages and the submitMessageForApproval operations. Figure 7-26
on page 157 shows the implementation of the class.

The specification and use of the various imports statements are the same as
explained in the implementation of the BulletinOprImpl class in phase two. The
need of the operation provider class to implement the initialize() and
getOperations() methods was also explained. This class will create and use the
PendingMessageSDE Service Data Element. Further, the class will store all the
156 Grid Services Programming and Application Enablement

messages that are submitted by the writer and not retrieved by the editor in the
pendingMessageChunk private variable.

Figure 7-26 Implementation of the BulletinPenMesgOprImpl class

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.GridContext;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;
import org.globus.ogsa.GridServiceCallback;

import javax.xml.namespace.QName;
import java.rmi.RemoteException;

public class BulletinPenMesgOprImpl implements OperationProvider, GridServiceCallback {

private MainSrvImpl myMain;

private MessageDataType mdt;

private String instanceName;
private String pendingMessageChunck = "";

private ServiceData pendingMessageSDE;

// Operation provider properties
private static final QName[] operations = new QName[]{new

QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "submitMessageForApproval"),
new QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs",

"getPendingMessages")};
private GridServiceBase base;

public void initialize(GridServiceBase base) throws GridServiceException {
this.base = base;

}
public QName[] getOperations() {

return operations;
}

BulletinPenMesgOprImpl(MainSrvImpl main) {
myMain = main;

}

 Chapter 7. Case study: grid application enablement 157

As was mentioned in phase two, this class implements the GridServiceCallback
interface in addition to the OperationProvider class. Figure 7-27 is the continued
implementation of the BulletinPenMesgOprImpl class and shows the
implementation of the methods introduced in the GridServiceCallback interface.
Just as was explained in phase two, this class implements the postCreate()
method to initialize the use of the service data. All other callback methods have
empty implementations.

The postCreate() method is invoked by the container at runtime soon after the
instance is created and before any grid service operation is dispatched. The
method creates a Service Data Element called PendingMessages by calling the
create() method on the service data set of the bulletin service. The service data
set is obtained by invoking the getServiceDataSet() method on the
GridServiceBase instance. The message is stored in an instance of type
MessageDataType as explained in phase two and added to the service data by
invoking the setValue() method.

Figure 7-27 Implementation of the BulletinPenMesgOprImpl class - continued

Figure 7-28 on page 159 is the continuation of the implementation of the
BulletinPenMesgOprImpl class. The implementation of the methods that
correspond to the bulletin service operations is shown. The

public void preCreate(GridServiceBase arg0) throws GridServiceException {
// Do nothing

}

public void postCreate(GridContext arg0) throws GridServiceException {
instanceName = myMain.getInstanceName();
System.out.println("Instance "+instanceName+" created.");

pendingMessageSDE = base.getServiceDataSet().create("PendingMessages");

mdt = new MessageDataType();
pendingMessageSDE.setValue(mdt);
mdt.setMessage(instanceName);

base.getServiceDataSet().add(pendingMessageSDE);
}

public void activate(GridContext arg0) throws GridServiceException {
// Do nothing

}
public void deactivate(GridContext arg0) throws GridServiceException {
// Do nothing

}
public void preDestroy(GridContext arg0) throws GridServiceException {

// Do nothing
}

158 Grid Services Programming and Application Enablement

submitMessageForApproval() method is invoked by the writer when submitting a
new bulletin message. The method appends the submitted message to a private
variable and triggers a notification message to the clients that have registered an
interest in the pending message, namely the editor. The runtime delivers the
notification to the registered parties.

Figure 7-28 Implementation of the BulletinPenMesgOprImpl class - continued

After receiving the notification of new pending messages, the editor invokes the
getPendingMessages() method in order to retrieve the bulletin messages that
have been submitted by the writer. The implementation of the method returns the
pending messages since the last time the editor invoked this method. The
method also resets the pendingMessageChunck to an empty string. This is to
ensure that the next time the editor obtains the pending messages, no previously
extracted messages are received.

Implementation of the BulletinAppMesgOprImpl class
In this section, we will illustrate the implementation of the
BulletinAppMesgOprImpl class. As mentioned before, this class is one of the
operation provider classes of the bulletin grid service and is responsible for
implementing the submitMessageForApproval operations. The set of figures
below shows the implementation of the class. As can be seen from the figures,
the implementation is identical to that of the BulletinOprImpl class shown in
phase two. The only difference is in the name of the class. In order to make the
name meaningful, we changed the name from BulletinOprImpl to
BulletinAppMesgOprImpl.

public void submitMessageForApproval(java.lang.String msg) throws RemoteException {
System.out.println("Instance "+instanceName+" received message: " +msg);
pendingMessageChunck += msg + "\n";

pendingMessageSDE.notifyChange();
}

public java.lang.String getPendingMessages() throws RemoteException {
String result = new String(pendingMessageChunck);
pendingMessageChunck = "";
return result;

}
}

 Chapter 7. Case study: grid application enablement 159

Figure 7-29 Implementation of the BulletinAppMesgOprImpl Class

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.GridContext;
import org.globus.ogsa.GridServiceCallback;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;

import java.rmi.RemoteException;

import javax.xml.namespace.QName;

public class BulletinAppMesgOprImpl implements OperationProvider, GridServiceCallback {

private MainSrvImpl myMain;

private MessageDataType mdt;

private String instanceName;

private ServiceData approvedMessagesSDE;

// Operation provider properties
private static final QName[] operations = new QName[]{new

QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "submitApprovedMessages")};
private GridServiceBase base;

public void initialize(GridServiceBase base) throws GridServiceException {
this.base = base;

}

public QName[] getOperations() {
return operations;

}

BulletinAppMesgOprImpl(MainSrvImpl main) {
myMain = main;

}

160 Grid Services Programming and Application Enablement

Figure 7-30 Implementation of the BulletinAppMesgOprImpl class - continued

Implementation of the MainSrvImpl class
Figure 7-31 on page 162 shows the implementation of the MainSrvImpl Class.
The additions to the implementation from phase two are highlighted. Since in
phase three, we implement two operation provider classes for the bulletin grid
service, the constructor of the MainSrvImpl has to create instances of those
classes and add them to the grid service implementation.

public void preCreate(GridServiceBase arg0) throws GridServiceException {
// Do nothing

}
public void postCreate(GridContext arg0) throws GridServiceException {

instanceName = myMain.getInstanceName();
System.out.println("Instance "+instanceName+" created.");

approvedMessagesSDE = base.getServiceDataSet().create("ApprovedMessages");

mdt = new MessageDataType();
approvedMessagesSDE.setValue(mdt);
mdt.setMessage("Initialized");

base.getServiceDataSet().add(approvedMessagesSDE);
}

public void activate(GridContext arg0) throws GridServiceException {
// Do nothing

}

public void deactivate(GridContext arg0) throws GridServiceException {
// Do nothing

}

public void preDestroy(GridContext arg0) throws GridServiceException {
// Do nothing

}
public void submitApprovedMessages(java.lang.String msgs) throws RemoteException {

mdt.setMessage(instanceName+": "+msgs);
approvedMessagesSDE.notifyChange();

}
}

 Chapter 7. Case study: grid application enablement 161

Figure 7-31 Implementation of the MainSrvImpl class

package com.ibm.itso.grid.gt3.bulletin.server;

import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.impl.ogsi.GridServiceImpl;
import org.gridforum.ogsi.LocatorType;
import javax.xml.namespace.QName;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.ServiceDataSet;

public class MainSrvImpl extends GridServiceImpl {

 public MainSrvImpl() throws GridServiceException {
 super("Bulletin Service Implementation");
this.addOperationProvider(new BulletinAppMesgOprImpl(this));
this.addOperationProvider(new BulletinPenMesgOprImpl(this));
 }
public String getInstanceName() {

 String Space = "http://www.gridforum.org/namespaces/2003/03/OGSI";
 try {
 ServiceDataSet dataset = this.getServiceDataSet();
 QName handle = new QName(Space,"gridServiceHandle");
 QName factoryLocator = new QName(Space,"factoryLocator");
 ServiceData dataOfHandle = dataset.get(handle);
 ServiceData dataOfFactor = dataset.get(factoryLocator);

 String handleS = dataOfHandle.getValue().toString();

 LocatorType locatortype = (LocatorType)dataOfFactor.getValue();
 String factorS= (locatortype.getHandle()[0]).getValue().toString();

 int lastPosition = handleS.lastIndexOf("/");
 if (factorS.equalsIgnoreCase(handleS.substring(0,lastPosition))) {
 String InstanceName = handleS.substring(lastPosition +1,
handleS.length());
 System.out.println("Get instance Name:"+InstanceName);
 return InstanceName;
 }
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return null;
 }
}

162 Grid Services Programming and Application Enablement

7.6.2 Modifying the writer client

In this section, we present the implementation of the writer client and discuss the
changes made to the writer client from phase two in order to incorporate the
editor approval and the workflow in the submission, approval, and subscription
notification of the bulletin messages.

Figure 7-32 shows the implementation of the writer client. The implementation of
the writer client is identical to that of phase two except for one major difference.

Figure 7-32 Implemenation of the BulletinWriter class

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.List;
import java.util.ArrayList;

public class BulletinWriter {

public static final void main(String[] args) {
// The base GSH and the instance names will be informed
// as command-line arguments
String baseGSH = args[0];

// Build service instance references
int instanceCount = args.length-1;
BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
List instanceNames = new ArrayList(instanceCount);

try {
for (int i=0; i<instanceCount; i++) {

String instanceName = args[i+1];
String GSHstr = baseGSH+"/"+instanceName;
URL GSH = new URL(GSHstr);
BulletinServiceGridLocator bulletinGL = new BulletinServiceGridLocator();
bulletins[i] = bulletinGL.getBulletinServicePort(GSH);
instanceNames.add(instanceName);

};
 Chapter 7. Case study: grid application enablement 163

The difference in the implementation of the writer client from phase two to phase
three is highlighted. In the second phase, the writer submitted the bulletin
messages by invoking the submitApprovedMessages() and the messages were
directly pushed to the subscribing client. However, in this phase, the workflow
has been introduced and an additional actor, namely the editor, is responsible for
approving the submitted messages. Hence, the writer submits the message by
invoking the submitMessageForApproval operation.

Figure 7-33 Implementation of the BulletinWriter class - continued

7.6.3 Implementing the editor client
In this section, we discuss the implementation of the editor client. As mentioned
previously, the editor client provides a user interface for the editor to retrieve the
pending bulletin messages that are submitted by the writer, review, and approve

boolean go = true;
while (go) {

BufferedReader br
 = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter the type of message you want to submit");

String instanceName = br.readLine();
int instanceIndex = instanceNames.indexOf(instanceName);

if (instanceIndex == -1) {
System.out.println("There isn't any service instance named "+instanceName);

} else {
System.out.println("Enter the message");
String message = br.readLine();

bulletins[instanceIndex].submitMessageForApproval(message);
}

System.out.println("Do you want to submit another message (y/n) ?");
char key = Character.toLowerCase((char) br.read());
if (key != 'y') {

go = false;
}

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

164 Grid Services Programming and Application Enablement

them. The editor can retrieve, review, and approve the bulletin messages on any
of the topics the News Service is currently interested in providing the service.

Figure 7-34 Implementation of the BulletinEditor class

Figure 7-34 shows the first segment of the implementation of the editor client.
The implementation of the editor client is provided by the class BulletinEditor.
Similar to the implementation of other clients shown previously, the
BulletinServiceGridLocator class aids in resolving the GSH into a GSR for a
given bulletin service instance. A variable of BulletinPortType maintains the client
reference to the bulletin grid service instance. An instance of the
MessageDataType stores the bulletin messages that are submitted by the writer
and reviewed by the editor. The use of the other imports is identical to that in the
BulletinSubscriber client. For an explanation of the imports, refer to the
description of the BulletinSubscriber implementation in phase two.

Figure 7-34 shows the continuation of the BulletinEditor class. Similar to the
BulletinSubscriber class, the BulletinEditor class also extends the
ServicePropertiesImpl class and implements the NotificationSinkCallback
interface. As shown below, the entire logic of the BulletinEditor is enclosed in the
run() method which we will discuss shortly.

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.utils.AnyHelper;
import org.globus.ogsa.NotificationSinkCallback;
import org.globus.ogsa.impl.core.service.ServicePropertiesImpl;
import org.globus.ogsa.client.managers.NotificationSinkManager;

import org.gridforum.ogsi.HandleType;
import org.gridforum.ogsi.ExtensibilityType;
import org.gridforum.ogsi.ServiceDataValuesType;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.List;
import java.util.Iterator;
import java.util.ArrayList;
import java.util.StringTokenizer;
 Chapter 7. Case study: grid application enablement 165

Figure 7-35 Implementation of the BulletinEditor class - continued

Figure 7-36 on page 167 is the continuation of the BulletinEditor class and shows
the implementation of the run() method. When the editor client is invoked, the
address of the bulletin service and the name(s) of the service instances that the
new service is providing service for are passed as arguments. The
implementation constructs the GSRs of the instance name(s) passed, in URL
form, by concatenating each of the instance names with the address of the
bulletin service.

Once the GSH of the bulletin service instances has been created, it resolves the
references into GSRs. An instance of the BulletinServiceGridLocator instance
class aids in resolving GSHs into GSRs. As shown in the code below, the editor
client creates an instance of the BulletinServiceGridLocator class and invokes
the getBulletinServicePort() method on it by passing the GSH parameter.
Obtaining a reference to the service instances is critical to the support of other
editor client functionality. The implementation of the run() method also maintains
a list of names of the bulletin service instances in the instanceNames variable.

In order to receive the messages that are stored in the PendingMessages SDE
of the bulletin service instance, the editor client has to register for the
notifications. This registration is accomplished by adding a listener to the SDE.
As can be seen in Figure 7-36 on page 167, this is accomplished with the aid of
the NotificationSinkManager instance. This is obtained by calling the
getManager() static method of the NotificationSinkManager class. It returns the
singleton NotificationSinkManager instance. The listening process is started by
invoking the startListenting() method on the NotificationSinkManager instance
and passing the identifier of the waiting thread.

public class BulletinEditor extends ServicePropertiesImpl implements
NotificationSinkCallback {

List instanceNames;
BulletinPortType[] bulletins;

public static final void main(String[] args) {
BulletinEditor be = new BulletinEditor();
be.run(args);

}

166 Grid Services Programming and Application Enablement

Figure 7-36 Implementation of the BulletinEditor class - continued

Finally, the listener is added to the SDE by invoking the addListner() method on
the NotificationSinkManager instance. As shown in the figure, the name of the
SDE, the handle to the service instance on which the listening is to be performed
and the pointer to the NotificationSinkCallback have to be passed along with the
method invocation. In our case, the SDE is PendingMessages and the grid
service instance is one of the bulletin service instances. Since the BulletinEditor
class implements the NotificationSinkCallback interface, providing the
implementation of the deliverNotification() callback method, as shown later, its
reference is passed to the addListner() method. It should be noted that
addListner() is invoked inside the for loop and is invoked once for each of the
bulletin service instances. Further, since the same reference of the
NotificationSinkCallback instance ‘this’ is passed in with multiple invocations of
the addListner, the deliverNotification() method of this instance will receive
notifications from the SDEs of multiple bulletin service instances.

Figure 7-37 on page 169 shows the continuation of the run() method. Once the
initialization and registration are performed, the implementation of the run()

private void run(String[] args) {

// The base GSH and the instance names will be informed
// as command-line arguments
String baseGSH = args[0];

// Build service instance references
int instanceCount = args.length-1;
BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
instanceNames = new ArrayList(instanceCount);

try {
NotificationSinkManager notifManager = NotificationSinkManager.getManager();
String sinks[] = new String[instanceCount];

for (int i=0; i<instanceCount; i++) {
String GSHstr = baseGSH+"/"+args[1+i];
URL GSH = new URL(GSHstr);
BulletinServiceGridLocator bulletinGL = new BulletinServiceGridLocator();
bulletins[i] = bulletinGL.getBulletinServicePort(GSH);

notifManager.startListening(NotificationSinkManager.MAIN_THREAD);
sinks[i] = notifManager.addListener("PendingMessages", null, new

HandleType(GSHstr), this);
instanceNames.add(args[i+1]);

};
 Chapter 7. Case study: grid application enablement 167

method allows the editor to review the pending messages one by one. Since
there are multiple topics and hence multiple instances of the bulletin service from
which the editor can retrieve messages, the editor can choose the topic of the
bulletin messages he/she wants to review and approve. As shown in the figure,
the pending messages are retrieved by invoking the getPendingMessages
operation. The getPendingMessages operation retrieves all the messages that
were submitted by the writer on the given topic since the last invocation of this
operation. The implementation splits the set of messages into individual
messages and allows the editor to review the message. Subsequently, when the
editor approves the message, the submitApprovedMessages operation is invoked
on the proper bulletin service instance. This operation stores the approved
messages in the ApprovedMessages Service Data Element and pushes the
messages to the subscriber.
168 Grid Services Programming and Application Enablement

Figure 7-37 Implementation of the BulletinEditor class - continued

boolean go = true;
while (go) {

System.out.println("Type:\n\t R - review pending messages\n\t Q - quit
program");

try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char key = Character.toLowerCase((char) br.read());
switch(key) {

case 'r':
br.readLine();
System.out.println("Which type of message do you want to review ?");
String name = br.readLine();
int instanceIndex = instanceNames.indexOf(name);
String messageChunck = bulletins[instanceIndex].getPendingMessages();
String[] messages = splitMessages(messageChunck);
for(int i=0, j=messages.length; i<j; i++) {

System.out.println("Message ("+(i+1)+"/"+j+"):\n"+messages[i]);
System.out.println("Do you approve it (y/n) ?");
char opt = Character.toLowerCase((char) br.read());
if (opt == 'y') {

bulletins[instanceIndex].submitApprovedMessages(messages[i]);
}
br.readLine();

}
break;
case 'q':

go = false;
break;
default:

System.out.println("Whazaaa ???");
}

} catch (Exception e) {
System.err.println("An error ocurred while processing a notificaton: "+e);
e.printStackTrace();
go = false;

}
}
// Stop listening
for (int i=0; i<instanceCount; i++) {

notifManager.removeListener(sinks[i]);
}
notifManager.stopListening();
System.out.println("Not listening anymore!");

} catch (Exception e) { e.printStackTrace(); }
}

 Chapter 7. Case study: grid application enablement 169

As shown in Figure 7-37 on page 169, while exiting, the run() method removes
the listeners and stops listening for the notifications. When a listener is added, a
handle to the listener is returned by the runtime. It is stored in the sinks array.
The listener is removed by invoking the removeListner() method on the
NotificationSinkManager and by passing the handle that was obtained while
adding the listener. The listening is stopped by invoking the stopListening()
method on the NotificationSinkManager.

Figure 7-38 on page 171 shows the continuation of the BulletinEditor class
implementation. The first method, namely, splitMessages(), is the private method
used from within the run() method for splitting a set of messages into an array of
strings. The deliverNotification() method is a callback method and, as explained
below, is invoked by the runtime.

Whenever a news bulletin message is submitted by the writer, the server triggers
a change notification. The listener detects the notification event and the
notification is delivered to the class implementing the NotificationSinkCallback
class. As was shown above, in our example the BulletinEditor class itself
implements the NotificationSinkCallback interface and is provided the
notifications. Figure 7-38 on page 171 shows the implementation of the
deliverNotification() callback method.
170 Grid Services Programming and Application Enablement

Figure 7-38 Implementation of the BulletinEditor class - continued

As shown in Figure 7-38, when deliverNotification() is called, the service data is
passed in the any variable. The method extracts the name of the News Service
delivering the notification from the service data and presents it to the editor. This
is a pull notification whereby the editor is notified about the existence of the
pending messages on a particular topic and the editor, as shown in the run()
method implementation, pulls the bulletin messages from the proper bulletin
service instance. The static methods of the AnyHelper class provide the utility
functions needed to extract the service data and the topic from the service data.
The getAsServiceDatavalues() method extracts the service data from the
incoming any variable. The getAsSingleObject() obtains the message of the
MessageDataType class from the service data. The method is passed the class
object of the message along with service data.

private String[] splitMessages(String mc) {
String[] result;
StringTokenizer tokenizer = new StringTokenizer(mc, "\n");
List messages = new ArrayList();

while (tokenizer.hasMoreElements()) {
messages.add(tokenizer.nextElement());

}

result = new String[messages.size()];
Iterator it = messages.iterator();
int i = 0;
while(it.hasNext()) {

result[i++] = (String) it.next();
}

return result;
}

public void deliverNotification(ExtensibilityType any) throws RemoteException {
ServiceDataValuesType serviceData = AnyHelper.getAsServiceDataValues(any);
MessageDataType mdt = (MessageDataType) AnyHelper.getAsSingleObject(serviceData,

MessageDataType.class);

System.out.println("There are new pending messages about "+mdt.getMessage()+".");
}

)

 Chapter 7. Case study: grid application enablement 171

7.7 Phase IV: making the News Service robust
Phase one, two, and three concentrated on satisfying the functional requirements
specified in the previous chapter. In this phase, we will specifically focus on
making the News Service robust. With the implementation, so far, if the server
hosting the service instances is down for some reason, all the pending news
bulletin messages will be lost. The approved messages are pushed to the
subscriber right after the editor approves them. On the other hand, the pending
messages submitted by the writer reside in memory until the editor retrieves,
reviews and approves them. Hence, if the server is down, all the pending
messages will be lost.

In order to make the News Service robust, we will take advantage of the callback
methods which are executed at different stages of the service instances life
cycle. 5.4, “Life cycle” on page 64 provides a discussion of the life cycle of the
grid service instances and the critical points in the life cycle when the various
callback methods are executed.

In our example, we have to make certain that the pending messages will survive
server shutdowns and be available when the server is back up and running. In
order to ensure that the pending messages survive server shutdowns, we will
have to persist them when the News Service instances are destroyed from
memory and create them when the server starts up and News Service instances
are recreated. The pending messages are created and managed in the
BulletinPenMesgOprImpl class. The set of figures shown next illustrate the
implementation of the BulletinPenMesgOprImpl class for phase four. The
additional code for phase four has been highlighted.
172 Grid Services Programming and Application Enablement

Figure 7-39 Implementation of the BulletinPenMesgOprImpl Class

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.GridContext;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;
import org.globus.ogsa.GridServiceCallback;
import java.rmi.RemoteException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import javax.xml.namespace.QName;

public class BulletinPenMesgOprImpl implements OperationProvider, GridServiceCallback {

private MainSrvImpl myMain;
private MessageDataType mdt;
private String instanceName;
private String pendingMessageChunck = "";
private ServiceData pendingMessageSDE;

private static final QName[] operations = new QName[]{new
QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "submitMessageForApproval"),

new QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs",
"getPendingMessages")};

private GridServiceBase base;
public void initialize(GridServiceBase base) throws GridServiceException {

this.base = base;
}

public QName[] getOperations() {
return operations;

}

BulletinPenMesgOprImpl(MainSrvImpl main) {
myMain = main;

}

 Chapter 7. Case study: grid application enablement 173

Figure 7-40 Implementation of the BulletinPenMesgOprImpl class - continued

public void submitMessageForApproval(java.lang.String msg) throws RemoteException {
System.out.println("Instance "+instanceName+" received message: " +msg);
pendingMessageChunck += msg + "\n";

pendingMessageSDE.notifyChange();
}

public java.lang.String getPendingMessages() throws RemoteException {
String result = new String(pendingMessageChunck);
pendingMessageChunck = "";
return result;

}

public void preCreate(GridServiceBase arg0) throws GridServiceException {
System.out.println("Service instance will be created");

}

public void postCreate(GridContext arg0) throws GridServiceException {
instanceName = myMain.getInstanceName();
System.out.println("Instance "+instanceName+" created.");

pendingMessageSDE = base.getServiceDataSet().create("PendingMessages");

mdt = new MessageDataType();
pendingMessageSDE.setValue(mdt);
mdt.setMessage(instanceName);
base.getServiceDataSet().add(pendingMessageSDE);
retrieveMessagesInFile();

}
public void activate(GridContext arg0) throws GridServiceException {

System.out.println("Service instance has been activated");
}
public void deactivate(GridContext arg0) throws GridServiceException {

System.out.println("Service instance has been deactivated");
}
public void preDestroy(GridContext arg0) throws GridServiceException {

saveMessagesInFile();
}

174 Grid Services Programming and Application Enablement

Figure 7-41 Implementation of the BulletinPenMesgOprImpl class - continued

As can be observed from the figures, the postCreate() and preDestroy() callback
methods are modified to deal with the persistence of the pending messages. The
postCreate() method is invoked by the runtime after the bulletin grid service is
created and the preDestroy() callback is invoked by the runtime right before the
grid service instance is destroyed. Hence, the pending messages are stored in

//class level lock to avoid different instances access the same file
private static Object fileLock = new Object();

//save the messages into data file when your instance will died
//the file will end with instance name
private void saveMessagesInFile() {

synchronized (fileLock) { //necessary only if multi instance with the same name
File MessageFile = new File("/tmp/data_" + instanceName + ".dat");
try {

if (MessageFile.exists())
MessageFile.delete();

MessageFile.createNewFile();
FileOutputStream fileOutS = new FileOutputStream(MessageFile);
ObjectOutputStream output =

new ObjectOutputStream(new FileOutputStream(MessageFile));
output.writeObject(pendingMessageChunck);
output.flush();
fileOutS.close();

} catch (IOException e) {
}

}
}

//get the messages back from saved file
private void retrieveMessagesInFile() {

synchronized (fileLock) { //necessary only if multi instance with the same name
try {

File MessageFile = new File("/tmp/data_" + instanceName + ".dat");
FileInputStream fileInputS = new FileInputStream(MessageFile);
ObjectInputStream input = new ObjectInputStream(fileInputS);
pendingMessageChunck = (String) input.readObject();
fileInputS.close();
System.out.println(pendingMessageChunck);

} catch (Exception e) {
}

}
}

}

 Chapter 7. Case study: grid application enablement 175

permanent storage right before the news grid service is destroyed from memory
by invoking the saveMessagesInFile() method from inside the preDestroy(). The
pending messages are retrieved from permanent storage and instantiated in
memory right after the grid news instance is created and initialized in the
postCreate() method. The saveMessagesInFile() method creates a new file if
one does not exist and streams the data in the pendingMessageChunk variable,
which stores the pending messages. The retrieveMessagesInFile() method
opens the file, reads the data and instantiates the pending messages in the
pendingMessageChunk variable.
176 Grid Services Programming and Application Enablement

Chapter 8. IBM Grid Toolbox basics

This chapter introduces the IBM Grid Toolbox V3 for Multiplatforms V1.1, the IBM
implementation of the OGSI 1.0 specification.

8

© Copyright IBM Corp. 2004. All rights reserved. 177

8.1 Introduction
IBM has been involved in the Globus project (Globus Alliance) for a number of
years. After identifying some gaps in the feature set of Globus Toolkit 2.4, a
package called the IBM Grid Toolbox was developed and provided on an as-is
basis on IBM’s AlphaWorks Web site:

http://www.alphaworks.ibm.com

As the Globus project evolved, the IBM Grid Toolbox team determined that due to
demand from IBM’s enterprise customers, there continued to be a need for a
product from IBM that enhanced Globus. In March 2004, the IBM Grid Toolbox
V3 for Multiplatforms V1.1 was announced. It provides simple installation and
integration of the middleware. The IBM Grid Toolbox also adds significant value
for the two major grid roles:

� Grid Developer: tools to develop and test grid services and grid applications
� Grid Administrator: tools to host grid services and grid applications

The IBM Grid Toolbox V3 for Multiplatforms V1.1 implements the OGSI
standards and provides the tools to build, develop, deploy, and manage grid
services. The IBM Grid Toolbox consists of the following:

� A hosting environment capable of running grid services and collaborating with
other grid participants in running large tasks.

� A set of tools to manage, monitor, and administer grid services and the grid
hosting environment, including a Web-based interface, called IBM Grid
Services Manager.

� A set of APIs and development tools to create and deploy new grid services
and grid applications.

� A set of tools to simplify the installation process and the integration of the
embedded middleware, such as IBM WebSphere Application Server-Express
V5.0.2.

For more information about the IBM Grid Toolbox, refer to the redbook Grid
Computing with the IBM Grid Toolbox, SG24-6332.

8.1.1 Goals
The IBM Grid Toolbox’s primary goal is to provide a common infrastructure for
grid computing, autonomic management, and on demand solutions to the IT
industry.
178 Grid Services Programming and Application Enablement

http://www.alphaworks.ibm.com

Target audience
The target audience for the IBM Grid Toolbox is the enterprise-class developer.
IBM has worked with these customers for decades and understands their unique
and comprehensive requirements.

The development of grid services and applications is done at a very technically
demanding level and requires much effort. The IBM Grid Toolbox is positioned for
customers who have already decided to implement a grid, have studied and are
comfortable with Globus Toolkit 3, but are looking for a supported, licensed
product to match the support model of their other hardware and software
choices.

Enterprise value
The IBM Grid Toolbox brings value over and beyond what is available from the
open source community:

� Accelerates grid utilization since it provides a more complete development
and administration environment than GT3 alone.

� Lowers the risk inherent in developing with GT3 alone, since it is an
IBM-supported product (this support must be purchased).

� Allows enterprises to leverage the heterogeneous nature of their IT
infrastructure.

� Complements IBM’s grid industry offerings. For details, see:

http://www.ibm.com/grid/solutions/index.shtml

� Installs around the network easily with GUI or automated tools.

� Hosts components and common services within the embedded version of the
IBM WebSphere Application Server -Express V5.0.2.

� Scales with minimal incremental overhead.

� Coexists with other instances of WebSphere Application Server and other
Web services products.

� Interoperates with other standards-compliant implementations.

8.1.2 Services
The IBM Grid Toolbox includes core grid services and base grid services. Core
grid services are always available in the IBM Grid Toolbox instance. They cannot
be deployed or undeployed except during the installation process. Core grid
services include container management, logging services and security services.
Base grid services can be deployed during the IBM Grid Toolbox installation or
they can be deployed or undeployed separately. Base grid services include
Information services, Data Management services, Program Management
 Chapter 8. IBM Grid Toolbox basics 179

http://www.ibm.com/grid/solutions/index.shtml

services, Common Management Model Services, Policy services, and Service
Group services. The base grid services can be selectively installed.

8.2 Tooling
The IBM Grid Toolbox includes a Software Development Kit (SDK) that provides
a collection of reference information and tools for grid service developers. These
tools are presented in each methodology phase.

The coding tools themselves are based in the GT3. However, the IBM Grid
Toolbox not only encapsulate all these GT3 tools, but also offers complementary
tools for deploying, testing and management; this facilitates and improves the
whole process of developing grid applications.

8.2.1 Coding and building
The coding and building process can be automated in one single step though the
use of the ant tool, using different types of inputs. These are presented next.

The possible alternatives to start the process are to have as input a Java code
(bottom-up approach), a GWSDL code (top-down approach), or an XML code
(batch service creation approach).

The output of this process is the JAR and GAR files, meaning the stubs, service
locators, deployment descriptors, and an operator provider. Eventually, some
application-specific business logic may be added, so the packaging process
should be done manually.

Bottom-up approach This approach has as input Java code in a JAR file;
this means that the code should already be compiled
and archived in a JAR file.
Afterwards, the build.xml script may be customized
with any other suitable property, and the ant command
executed.
Remember that, as stated previously, some Java code
may have problems in the WSDL mapping, so this
automated process may not work properly.

Top-down approach This approach has GWSDL as input. The build.xml
script may be customized with any other suitable
property, and the ant command executed.

Batch service approach This approach has as input XML code following the
CreateGridServices.xsd, and allows the creation of
180 Grid Services Programming and Application Enablement

multiple grid services, using both the top-down or the
bottom-up approach.

8.2.2 Deployment
During the installation wizard process, the ibmgrid user is created. This user is
considered to be the grid administrator and is configured with the proper file
system permissions to start and stop the container as well as deploy and
undeploy grid service archives (gar files).

In order to set the required environment variables, the ibmgrid user must source
the igt-setenv.sh script located in /opt/IBMGrid. This can be accomplished with
the following command, as illustrated in Example 8-1.

Example 8-1 setenv.sh

. /opt/IBMGrid/igt-setenv.sh

Once the environment has been configured, the grid administrator (ibmgrid user)
can deploy and undeploy services. To deploy a service, the grid archive file must
be located in the $GLOBUS_LOCATION/gars directory. The grid administrator
will change directories to $GLOBUS_HOME and execute the igt-deploy-gar
command. Example 8-2 shows how to deploy the servicegroup.gar.

Example 8-2 Deploy services

igt-deploy-gar gars/servicegroup.gar

To undeploy a gar, the grid administrator (ibmgrid) will execute the
igt-undeploy-gar command and specify the gar_id as an argument. The gar_id
is the name of the grid archive minus the “.gar” extension. For example, the
gar_id of the service deployed in Example 8-2 is ServiceGroup. Refer to
Example 8-3, which illustrates how to undeploy the ServiceGroup service.

Example 8-3 Undeploy services

igt-undeploy-gar servicegroup

8.2.3 Testing
Once a grid service has been deployed into a container, there are ways to test
the new grid.

The first one is to use the IBM Grid Services Manager. This tool provides a great
deal of useful information about the service, Port Types, WSDL, and operations,
 Chapter 8. IBM Grid Toolbox basics 181

and allows you to manage its status and edit instances properties through a
graphical Web interface shown in Figure 8-1.

Figure 8-1 IBM Grid Service Manager interface

Some quick interaction may take place using the Service Browser tool, detailed
in Appendix F, “Service Browser” on page 253 and also available in the IBM Grid
Toolbox. Through the use of an Web interface, it will allow you to test remote
methods invocation from a runtime generated form. Watch for the address
changes from GT3 to IBM Grid Toolbok.

Finally, the most comprehensive way is to implement a simple client that tests
each of its exported methods in a more specific fashion. Such a client should
obtain a reference to a service factory, create its own instance and issue calls to
each of its methods in a convenient way.
182 Grid Services Programming and Application Enablement

8.3 Case study
The purpose of the case study is to identify and document the differences
between the GT3 and IBM Grid Toolbox from developers’ and deployers’
perspectives.

This document has introduced a simple grid service, then enhanced that service
to demonstrate advanced features as they were introduced throughout the text.
The sample grid service architecture, design, and development were explained,
as seen in Chapter 7, “Case study: grid application enablement” on page 115.
The sample code listed in Appendix A, “Sample code” on page 191 that was
previously developed using GT3 could have easily been developed using the IBM
Grid Toolbox.

The approach used to gather this information was first to redeploy the grid
service on the IBM Grid Toolbox and verify the proper operation of the service
using GT3 clients, and second, to develop the clients using the IBM Grid Toolbox
and verify interoperability with a GT3-hosted grid service. After verifying
interoperability of the IBM Grid Toolbox and GT3 environments, all phases of the
development effort which were completed on GT3 could be duplicated using the
IBM Grid Toolbox.

This general approach was further divided into phases, with each phase
incrementally building on the previous one.

1. Deploy a GT3 developed grid service on an IBM Grid Toolbox node using the
GT3 deployment process and verify proper operation using the existing GT3
BulletinAdminConsole.

2. Deploy an updated GT3 developed grid service on an IBM Grid Toolbox node
using the igt-deply-gar scripts and verify proper operation by using multiple
unique clients to check the full functionality of the service.

3. Build the entire service on the IBM Grid Toolbox from the Java interface
specification and implementation.

4. Build clients on the IBM Grid Toolbox which interacted with the existing GT3
grid service.

Prerequisites
IBM Grid Toolbox was installed on Red Hat Advanced Server V2.1. As part of the
environment setup and configuration, Apache ant was installed in
/usr/local/apache-ant-1.5.4 and /usr/local/apache-ant-1.5.4/bin was appended to
the PATH environment variable. The JAVA_HOME environment variable was set
to /usr/IBMJava2-131.
 Chapter 8. IBM Grid Toolbox basics 183

8.3.1 Case study - phase I
The initial testing phase consisted of a portability test to verify that a grid archive
(gar file) exported from the Globus Toolkit could be imported into the IBM Grid
Toolbox and run without modifications.

The server-side code is exported as Bulletin.gar and copied to the same
directory structure on a machine where the IBM Grid Toolbox was installed and
configured.

The environment is set up by sourcing the igt-setenv.sh shell script from the
/opt/IBMGrid directory; this does not happen with GT3.

The Bulletin.gar file is then deployed using the same ant procedure as was used
for GT3.

The script shown in Example 8-4 initializes some environment variables by
calling the Globus setenv.sh shell script for GT3. Although IBM Grid Toolbox
provides the igt-deploy-gar command, developers would probably use the ant
command to deploy and build the grid services.

Example 8-4 IBM Grid Toolbox environment setup and using ant to deploy a gar

. /opt/IBMGrid/igt-setenv.sh
ant deploy -Dgar.name=/home/itso/phase3/servicebuild/services/bulletin/\
build/gar/Bulletin.gar

Next, a proxy is created for the ibmgrid user and the container is started under
that user ID, as shown in Example 8-5. The commands and procedure for
creating a proxy are the same for both platforms.

Example 8-5 Create a proxy and start the container

grid-proxy-init
igt-start-container

Note: The IBM Grid Toolbox is installed and configured using an installation
wizard, which greatly simplifies the installation and configuration process.

Important: The igt-setenv.sh wraps the GT3 setenv and the
globus-user-env scripts and also sets additional environment variables for
WebSphere Application Server, IBM Grid Toolbox, CloudScape Database,
Path, and ClassPath.
184 Grid Services Programming and Application Enablement

The Grid Services Manager (GSM) is used to verify the deployment by ensuring
that BulletinFactory appears in the services list.

BulletinFactory is selected from the list of services by clicking the
corresponding radio button, selecting Activate from the GSM drop-down
command list, and finally clicking Go to activate the service.

The GT3 BulletinAdminConsole client is used to verify proper operation of the
newly deployed IBM Grid Toolbox bulletin service. After proper operation is
verified, the container is stopped (using igt-stop-container) and the bulletin
service is undeployed using the same ant commands and build.xml file that were
used in GT3, as shown in Example 8-6.

Example 8-6 Stop the container and undeploy the bulletin service

igt-stop-container
Ant undeploy -Dgar.id=Bulletin

Important: The difference lies in the commands to start and stop the
container. These are unique in each environment. To start or stop the
embedded WebSphere Application Server container for IBM Grid Toolbox, use
igt-start-container or igt-stop-container.

Note: GSM is a GT3 System Level service which is packaged and deployed
with the IBM Grid Toolbox. It provides a Web-based user interface for grid
administrators to manage instances and services. It allows the grid
administrator to add, remove, activate or deactivate instances and edit their
properties. It displays the service data descriptions, service port types, or the
service WSDL, and provides tools for viewing logging information, as well as
adding and removing logging services.

Important: This is another difference between GT3 and IBM Grid Toolbox.
GT3 uses the service browser which has limited functionality and is not
intuitively obvious to use. The IBM Grid Toolbox hosts a Grid Services
Manager which has more functionality and is easier to navigate and use than
the service browser.

Important: The URL argument for the clients does need to change to reflect
the <server_name> of the IBM Grid Toolbox server and the port on which the
IBM Grid Toolbox embedded WebSphere Application Server container is
listening. The default port for the IBM Grid Toolbox is 12080, as opposed to
the default port for Axis, which is 8080.
 Chapter 8. IBM Grid Toolbox basics 185

The server name is something that will obviously change, but the port of the
container is something that also needs to be considered, especially in a
heterogeneous environment with GT3 and IBM Grid Toolbox nodes. The IBM
Grid Toolbox provides a script that automates changing the port that the
container listens on, so the process is easy. Changing the default port for the
Globus Toolkit container is a manual process.

8.3.2 Case study - phase II
The grid service used for this phase included additional functionality. The
additional functionality was verified using the BulletinWriter and
BulletinSubscriber clients.

The updated grid service is deployed using the IBM Grid Toolbox deploy and
undeploy scripts in place of the ant script which was verified in the previous
phase. The gar is deployed using the igt-deploy-gar command, as shown in
Example 8-7.

Example 8-7 Deploying a gar file using the IBM Grid Toolbox commands

igt-deploy-gar
/home/itso/phase4/servicebuild/services/bulletin/build/gar/Bulletin.gar

The service is successfully deployed using igt-deploy-gar and activated using
the IBM Grid Toolbox Grid Services Manager. The GT3 clients are used to verify
proper operation of the IBM Grid Toolbox deployed grid service.

In addition to the URL argument changes mentioned for the previous phase, the
schema path (to the ogsi_notification_service_sink.wsdl and other associated
WSDL files) need to be updated. This is necessary for the new clients that are
introduced in this phase. The new clients are the BulletinSubscriber and the
BulletinWriter.

Important: Another difference between the GT3 and IBM Grid Toolbox is the
port on which the container listens for connections. The IBM Grid Toolbox
automates the process of changing the default port number, whereas it is a
manual process for the GT3.

Important: The igt-deploy-gar, igt-undeploy-gar, and igt-undeploy-all
commands are provided with the IBM Grid Toolbox and assist the grid
deployer in administering the grid environment.
186 Grid Services Programming and Application Enablement

The BulletinWriter client submits content to an instance of the BulletinService, for
example news. The BulletinSubscriber subscribes to an instance, then receives
updates when new content is posted to that instance.

Both of these clients are invoked from the Java command line with a parameter
specifying the URL of the service and setting a system property for the schema
root. Since the clients have been designed and developed to be invoked with
command line arguments, changing the argument(s) is the most straightforward
approach. If this has not been specified using command line arguments, a
possible alternative approach may be to identify the new schema root by editing
the value of the schemaPath parameter in the Web service deployment
descriptor (WSDD) file.

Example 8-8 shows the command for running the BulletinSubscriber client.
Similarly, Example 8-9 shows the command for running the BulletinSubscriber
client on the IBM Grid Toolbox.

Example 8-8 Running the BulletinSubscriber client on GT3

Java -Dorg.globus.ogsa.schema.root=http://j2:12080/
com.ibm.itso.grid.gt3.bulletin.client.BulletinSubscriber
http:// j2:12080/ogsa/services/Bulletin/BulletinFactory

The -D argument provided on the Java command line sets a system property. In
this case, the property is org.globus.ogsa.schema.root. This property identifies
the location of important WSDL files and is set to the root directory on GT3 and
to the OGSA directory on the IBM Grid Toolbox.

Example 8-9 Running the BulletinSubscriber client on IBM Grid Toolbox

Java -Dorg.globus.ogsa.schema.root=http://j2:12080/ogsa/
com.ibm.itso.grid.gt3.bulletin.client.BulletinSubscriber
http:// j2:12080/ogsa/services/Bulletin/BulletinFactory

Important: In GT3, the schema path is off the $GLOBUS_LOCATION which
was /usr/local/globus for the redbook development environment. In the IBM
Grid Toolbox environment, the schema path is located off
$GLOBUS_LOCATION/AppServer/installedApps/IBMGrid.ear/ogsa.war,
which is simply mapped to ogsa.

Important: Note that the first argument which specifies
org.globus.ogsa.schema.root is appended with ogsa, which allows the IBM
Grid Toolbox container to find the WSDL file located in the schema directory at
runtime.
 Chapter 8. IBM Grid Toolbox basics 187

8.3.3 Case study - phase III
Up to this point, grid services developed on GT3 have been deployed to the IBM
Grid Toolbox and verified using the IBM Grid Toolbox Grid Services Manager and
GT3 clients to verify the proper operation of the IBM Grid Toolbox grid service.
This has verified interoperability as well as administration from the deployer's
perspective.

Now the focus changes to the developer perspective. The Java interface and
implementation source code are used to build the grid service in the IBM Grid
Toolbox environment.

First, it is important to source the igt-setenv.sh script located in /opt/IBMGrid or
$GLOBUS_LOCATION to set up up the proper environment variables.

As mentioned previously, the default port the IBM Grid Toolbox container listens
on is different from the default port of the Axis server. If the source tree from the
GT3 environment is duplicated on the IBM Grid Toolbox machine, the
ogsa.properties file will need to be updated to correctly reflect the service.port.

When building the source on GT3, the outcome does not depend on the status of
the container. The container can be running or stopped during the build process.
However, with IBM Grid Toolbox, the ogsa.properties file must reflect the correct
service.port and the container must be running for the ant build.xml script to
complete successfully.

With these changes, the updated Bulletin service is successfully built from
source using the IBM Grid Toolbox. The service is packaged and deployed, then
verified using the existing GT3 clients (BulletinAdminConsole, BulletinWriter,
BulletinSubscriber, and BulletinEditor). Note that the command line arguments
for the clients must reflect ogsa for the schema root, as illustrated in Example 8-9
on page 187.

8.3.4 Case study - phase IV
The ant build.xml file that was generated for GT3 development has already been
verified to work with the IBM Grid Toolbox. Placing the client source code in the
appropriate directory structure and running the ant script will build the clients
since the clients were designed and developed to accept command line
arguments. The clients can be built and used in the same manner on GT3 or on
the IBM Grid Toolbox.

Important: The ogsa.properties file contains a service.port directive which
needs to be updated to reflect the service.port of the IBM Grid Toolbox 12080
(service.port=12080).
188 Grid Services Programming and Application Enablement

Example 8-10 is for an IBM Grid Toolbox client that will use an existing GT3 grid
service. The only difference is in the server name of either the GT3 machine or
the IBM Grid Toolbox machine. However, when the clients connect to an IBM
Grid Toolbox node, the parameter for org.globus.ogsa.schema.root needs to
reflect the ogsa directory.

Example 8-10 BulletinSubscriber client using a GT3 hosted BulletinFactory service

Java -Dorg.globus.ogsa.schema.root=http://i2:8080/
com.ibm.itso.grid.gt3.bulletin.client.BulletinSubscriber
http:// i2:8080/ogsa/services/Bulletin/BulletinFactory

Please see the following example of a client accessing an IBM Grid Toolbox grid
service. Notice that the server name, server port, and URI of the schema root
have been updated to j2:12080/ogsa/.

Example 8-11 BulletinSubscriber client using IBM Grid Toolbox hosted BulletinFactory
service

Java -Dorg.globus.ogsa.schema.root=http://j2:12080/ogsa/
com.ibm.itso.grid.gt3.bulletin.client.BulletinSubscriber
http:// j2:12080/ogsa/services/Bulletin/BulletinFactory

At this point in the case study, all issues have been identified and resolved.
Clients are able to interact with services in either a GT3 container or an IBM Grid
Toolbox container. GT3 and IBM Grid Toolbox clients can administer, subscribe
to, write or approve content for either environment. This verifies the
interoperability of GT3 and IBM Grid Toolbox and demonstrates how the
platforms can co-exist in a heterogeneous environment. This case study has
demonstrated that code can be developed on one platform and deployed to
another. The concepts presented here are specific to the bulletin service
example but can be applied to any grid service.
 Chapter 8. IBM Grid Toolbox basics 189

190 Grid Services Programming and Application Enablement

Appendix A. Sample code

This appendix contains part of the source codes of the bulletin service developed
for this project. This includes the server and the client sides, the Java code, and
the GWSDL schema files.

A

© Copyright IBM Corp. 2004. All rights reserved. 191

Server-side code
This session contains the server-side source code.

Example: A-1 GWSDL schema file for bulletin example

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BulletinService"
 targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:tns="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:data="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"
 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
 xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<import location="../../ogsi/ogsi.gwsdl"
namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

<import location="MessageDataType.xsd"
namespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"/>

<types>
<xsd:schema targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"

xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="submitMessageForApproval">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitMessageForApprovalResponse">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getPendingMessages">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getPendingMessagesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
192 Grid Services Programming and Application Enablement

 </xsd:element>
 <xsd:element name="submitApprovedMessages">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitApprovedMessagesResponse">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>
</types>

<message name="SubmitForApprovalInputMessage">
 <part name="parameters" element="tns:submitMessageForApproval"/>
</message>
<message name="SubmitForApprovalOutputMessage">
 <part name="parameters" element="tns:submitMessageForApprovalResponse"/>
</message>
<message name="GetPendingInputMessage">
 <part name="parameters" element="tns:getPendingMessages"/>
</message>
<message name="GetPendingOutputMessage">
 <part name="parameters" element="tns:getPendingMessagesResponse"/>
</message>
<message name="SubmitApprovedInputMessage">
 <part name="parameters" element="tns:submitApprovedMessages"/>
</message>
<message name="SubmitApprovedOutputMessage">
 <part name="parameters" element="tns:submitApprovedMessagesResponse"/>
</message>

<gwsdl:portType name="BulletinPortType" extends="ogsi:GridService ogsi:NotificationSource">
 <operation name="submitMessageForApproval">
 <input message="tns:SubmitForApprovalInputMessage"/>
 <output message="tns:SubmitForApprovalOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 <operation name="getPendingMessages">
 <input message="tns:GetPendingInputMessage"/>
 <output message="tns:GetPendingOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 <operation name="submitApprovedMessages">
 <input message="tns:SubmitApprovedInputMessage"/>
 <output message="tns:SubmitApprovedOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 Appendix A. Sample code 193

 <sd:serviceData name="PendingMessages"
 type="data:MessageDataType"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false">
 </sd:serviceData>
 <sd:serviceData name="ApprovedMessages"
 type="data:MessageDataType"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false">
 </sd:serviceData>
</gwsdl:portType>

</definitions>

Example: A-2 MessageDataType.xsd (needed in the same directory as Bulletin.gwsdl)

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MessageData"

targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
xmlns:tns="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<schema targetNamespace="http://bulletin.gt3.grid.itso.ibm.com/common/stubs"

attributeFormDefault="qualified"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="MessageDataType">
<sequence>

<element name="message" type="string"/>
</sequence>

</complexType>

</schema>
</wsdl:types>

</wsdl:definitions>
194 Grid Services Programming and Application Enablement

Example: A-3 Code for BulletinPenMesgOprImpl.java

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.GridContext;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;
import org.globus.ogsa.GridServiceCallback;

import java.rmi.RemoteException;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import javax.xml.namespace.QName;

public class BulletinPenMesgOprImpl implements OperationProvider, GridServiceCallback {

 private MainSrvImpl myMain;

 private MessageDataType mdt;

 private String instanceName;
 private String pendingMessageChunck = "";

 private ServiceData pendingMessageSDE;

 // Operation provider properties
 private static final QName[] operations = new QName[]{new
QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "submitMessageForApproval"),
 new
QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "getPendingMessages")};
 private GridServiceBase base;

 /* (non-Javadoc)
 * @see org.globus.ogsa.OperationProvider#initialize(org.globus.ogsa.GridServiceBase)
 */
 public void initialize(GridServiceBase base) throws GridServiceException {
 this.base = base;
 }
 Appendix A. Sample code 195

 /* (non-Javadoc)
 * @see org.globus.ogsa.OperationProvider#getOperations()
 */
 public QName[] getOperations() {
 return operations;
 }

 BulletinPenMesgOprImpl(MainSrvImpl main) {
 myMain = main;
 }

 /**
 * This method should be invoked by writers when they want to submit
 * a new message. It fires a notification to the editor
 * informing him about the new pending messages waiting for his
 * approval.
 */
 public void submitMessageForApproval(java.lang.String msg) throws RemoteException {
 System.out.println("Instance "+instanceName+" received message: " +msg);
 pendingMessageChunck += msg + "\n";

 pendingMessageSDE.notifyChange();
 }

 /**
 * This method provides the editor with the messages he hasn't taken
 * so far.
 */
 public java.lang.String getPendingMessages() throws RemoteException {
 String result = new String(pendingMessageChunck);
 pendingMessageChunck = "";
 return result;
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#preCreate(org.globus.ogsa.GridServiceBase)
 */
 public void preCreate(GridServiceBase arg0) throws GridServiceException {
 System.out.println("Service instance will be created");
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#postCreate(org.globus.ogsa.GridContext)
 */
 public void postCreate(GridContext arg0) throws GridServiceException {
 instanceName = myMain.getInstanceName();
 System.out.println("Instance "+instanceName+" created.");

 pendingMessageSDE = base.getServiceDataSet().create("PendingMessages");
196 Grid Services Programming and Application Enablement

 mdt = new MessageDataType();
 pendingMessageSDE.setValue(mdt);
 mdt.setMessage(instanceName);

 base.getServiceDataSet().add(pendingMessageSDE);

 retrieveMessagesInFile();
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#activate(org.globus.ogsa.GridContext)
 */
 public void activate(GridContext arg0) throws GridServiceException {
 System.out.println("Service instance has been activated");
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#deactivate(org.globus.ogsa.GridContext)
 */
 public void deactivate(GridContext arg0) throws GridServiceException {
 System.out.println("Service instance has been deactivated");
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#preDestroy(org.globus.ogsa.GridContext)
 */
 public void preDestroy(GridContext arg0) throws GridServiceException {
 saveMessagesInFile();
 }

 // ***
 // ***** This is the code that deals with file storage *****
 // ***

 //class level lock to avoid different instances access the same file
 private static Object fileLock = new Object();

 //save the messages into data file when your instance will died
 //the file will end with instance name
 private void saveMessagesInFile() {
 synchronized (fileLock) { //necessary only if multi instance with the same name
 File MessageFile = new File("/tmp/data_" + instanceName + ".dat");
 try {
 if (MessageFile.exists())
 MessageFile.delete();
 MessageFile.createNewFile();
 FileOutputStream fileOutS = new FileOutputStream(MessageFile);
 ObjectOutputStream output =
 Appendix A. Sample code 197

 new ObjectOutputStream(new
FileOutputStream(MessageFile));
 output.writeObject(pendingMessageChunck);
 output.flush();
 fileOutS.close();
 } catch (IOException e) {
 }
 }
 }

 //get the messages back from saved file
 private void retrieveMessagesInFile() {
 synchronized (fileLock) { //necessary only if multi instance with the same name
 try {
 File MessageFile = new File("/tmp/data_" + instanceName +
".dat");
 FileInputStream fileInputS = new FileInputStream(MessageFile);
 ObjectInputStream input = new ObjectInputStream(fileInputS);
 pendingMessageChunck = (String) input.readObject();
 fileInputS.close();
 System.out.println(pendingMessageChunck);
 } catch (Exception e) {
 }
 }
 }
}

Example: A-4 Code for BulletinAppMesgOprImpl.java

package com.ibm.itso.grid.gt3.bulletin.server;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.GridContext;
import org.globus.ogsa.GridServiceCallback;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;

import java.rmi.RemoteException;

import javax.xml.namespace.QName;

public class BulletinAppMesgOprImpl implements OperationProvider, GridServiceCallback {

 private MainSrvImpl myMain;
198 Grid Services Programming and Application Enablement

 private MessageDataType mdt;

 private String instanceName;

 private ServiceData approvedMessagesSDE;

 // Operation provider properties
 private static final QName[] operations = new QName[]{new
QName("http://bulletin.gt3.grid.itso.ibm.com/common/stubs", "submitApprovedMessages")};
 private GridServiceBase base;

 /* (non-Javadoc)
 * @see org.globus.ogsa.OperationProvider#initialize(org.globus.ogsa.GridServiceBase)
 */
 public void initialize(GridServiceBase base) throws GridServiceException {
 this.base = base;
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.OperationProvider#getOperations()
 */
 public QName[] getOperations() {
 return operations;
 }

 BulletinAppMesgOprImpl(MainSrvImpl main) {
 myMain = main;
 }

 /**
 * This method is invoked by the editor so that the subscribers can be
 * notified of the messages he has approved.
 */
 public void submitApprovedMessages(java.lang.String msgs) throws RemoteException {
 mdt.setMessage(instanceName+": "+msgs);
 approvedMessagesSDE.notifyChange();
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#preCreate(org.globus.ogsa.GridServiceBase)
 */
 public void preCreate(GridServiceBase arg0) throws GridServiceException {
 // Do nothing
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#postCreate(org.globus.ogsa.GridContext)
 */
 Appendix A. Sample code 199

 public void postCreate(GridContext arg0) throws GridServiceException {
 instanceName = myMain.getInstanceName();
 System.out.println("Instance "+instanceName+" created.");

 approvedMessagesSDE = base.getServiceDataSet().create("ApprovedMessages");

 mdt = new MessageDataType();
 approvedMessagesSDE.setValue(mdt);
 mdt.setMessage("Initialized");

 base.getServiceDataSet().add(approvedMessagesSDE);
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#activate(org.globus.ogsa.GridContext)
 */
 public void activate(GridContext arg0) throws GridServiceException {
 // Do nothing
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#deactivate(org.globus.ogsa.GridContext)
 */
 public void deactivate(GridContext arg0) throws GridServiceException {
 // Do nothing
 }

 /* (non-Javadoc)
 * @see org.globus.ogsa.GridServiceCallback#preDestroy(org.globus.ogsa.GridContext)
 */
 public void preDestroy(GridContext arg0) throws GridServiceException {
 // Do nothing
 }
}

Example: A-5 Code for MainSrvImpl.java

package com.ibm.itso.grid.gt3.bulletin.server;

import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.impl.ogsi.GridServiceImpl;
import org.gridforum.ogsi.LocatorType;
import javax.xml.namespace.QName;
import org.globus.ogsa.ServiceData;
import org.globus.ogsa.ServiceDataSet;
200 Grid Services Programming and Application Enablement

public class MainSrvImpl extends GridServiceImpl {

 public MainSrvImpl() throws GridServiceException {
 super("Bulletin Service Implementation");
 this.addOperationProvider(new BulletinAppMesgOprImpl(this));
 this.addOperationProvider(new BulletinPenMesgOprImpl(this));
 }

 /**
 //get the grid server instance name
 //first get all the GSHs
 //then get all the GSRs
 //Compare them to return the first name we found
 **/
 public String getInstanceName() {

 String Space = "http://www.gridforum.org/namespaces/2003/03/OGSI";
 try {
 ServiceDataSet dataset = this.getServiceDataSet();
 QName handle = new QName(Space,"gridServiceHandle");
 QName factoryLocator = new QName(Space,"factoryLocator");
 ServiceData dataOfHandle = dataset.get(handle);
 ServiceData dataOfFactor = dataset.get(factoryLocator);

 String handleS = dataOfHandle.getValue().toString();

 LocatorType locatortype = (LocatorType)dataOfFactor.getValue();
 String factorS= (locatortype.getHandle()[0]).getValue().toString();

 int lastPosition = handleS.lastIndexOf("/");
 if (factorS.equalsIgnoreCase(handleS.substring(0,lastPosition))) {
 String InstanceName = handleS.substring(lastPosition +1,
handleS.length());
 System.out.println("Get instance Name:"+InstanceName);
 return InstanceName;
 }
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return null;
 }

}

 Appendix A. Sample code 201

Client-side code
This session contains the client-side source code.

Example: A-6 Code for BulletinEditor.java

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.utils.AnyHelper;
import org.globus.ogsa.NotificationSinkCallback;
import org.globus.ogsa.impl.core.service.ServicePropertiesImpl;
import org.globus.ogsa.client.managers.NotificationSinkManager;

import org.gridforum.ogsi.HandleType;
import org.gridforum.ogsi.ExtensibilityType;
import org.gridforum.ogsi.ServiceDataValuesType;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.List;
import java.util.Iterator;
import java.util.ArrayList;
import java.util.StringTokenizer;

public class BulletinEditor extends ServicePropertiesImpl implements NotificationSinkCallback {

 List instanceNames;
 BulletinPortType[] bulletins;

 public static final void main(String[] args) {
 BulletinEditor be = new BulletinEditor();
 be.run(args);
 }

 private void run(String[] args) {

 // The base GSH and the instance names will be informed
 // as command-line arguments
 String baseGSH = args[0];

 // Build service instance references
 int instanceCount = args.length-1;
 BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
202 Grid Services Programming and Application Enablement

 instanceNames = new ArrayList(instanceCount);

 try {
 NotificationSinkManager notifManager =
NotificationSinkManager.getManager();
 String sinks[] = new String[instanceCount];

 for (int i=0; i<instanceCount; i++) {
 String GSHstr = baseGSH+"/"+args[1+i];
 URL GSH = new URL(GSHstr);
 BulletinServiceGridLocator bulletinGL = new
BulletinServiceGridLocator();
 bulletins[i] = bulletinGL.getBulletinServicePort(GSH);

notifManager.startListening(NotificationSinkManager.MAIN_THREAD);
 sinks[i] = notifManager.addListener("PendingMessages", null,
new HandleType(GSHstr), this);
 instanceNames.add(args[i+1]);
 };

 boolean go = true;
 while (go) {

 System.out.println("Type:\n\t R - review pending messages\n\t Q
- quit program");

 try {
 BufferedReader br
 = new BufferedReader(new
InputStreamReader(System.in));

 char key = Character.toLowerCase((char) br.read());

 switch(key) {
 case 'r':
 br.readLine();
 System.out.println("Which type of
message do you want to review ?");
 String name = br.readLine();
 int instanceIndex =
instanceNames.indexOf(name);
 String messageChunck =
bulletins[instanceIndex].getPendingMessages();
 String[] messages =
splitMessages(messageChunck);
 for(int i=0, j=messages.length; i<j;
i++) {
 Appendix A. Sample code 203

 System.out.println("Message
("+(i+1)+"/"+j+"):\n"+messages[i]);
 System.out.println("Do you
approve it (y/n) ?");
 char opt =
Character.toLowerCase((char) br.read());
 if (opt == 'y') {

bulletins[instanceIndex].submitApprovedMessages(messages[i]);
 }
 br.readLine();
 }
 break;
 case 'q':
 go = false;
 break;
 default:
 System.out.println("Whazaaa ???");
 }
 } catch (Exception e) {
 System.err.println("An error ocurred while processing a
notificaton: "+e);
 e.printStackTrace();
 go = false;
 }
 }

 // Stop listening
 for (int i=0; i<instanceCount; i++) {
 notifManager.removeListener(sinks[i]);
 }

 notifManager.stopListening();
 System.out.println("Not listening anymore!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /* (non-Javadoc)
 * @see
org.gridforum.ogsi.NotificationSink#deliverNotification(org.gridforum.ogsi.ExtensibilityType)
 */
 public void deliverNotification(ExtensibilityType any) throws RemoteException {
 ServiceDataValuesType serviceData = AnyHelper.getAsServiceDataValues(any);
 MessageDataType mdt = (MessageDataType)
AnyHelper.getAsSingleObject(serviceData, MessageDataType.class);
204 Grid Services Programming and Application Enablement

 System.out.println("There are new pending messages about
"+mdt.getMessage()+".");
 }

 private String[] splitMessages(String mc) {
 String[] result;
 StringTokenizer tokenizer = new StringTokenizer(mc, "\n");
 List messages = new ArrayList();

 while (tokenizer.hasMoreElements()) {
 messages.add(tokenizer.nextElement());
 }

 result = new String[messages.size()];
 Iterator it = messages.iterator();
 int i = 0;
 while(it.hasNext()) {
 result[i++] = (String) it.next();
 }

 return result;
 }
}

Example: A-7 Code for BulletinSubscriber.java

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.MessageDataType;

import org.globus.ogsa.utils.AnyHelper;
import org.globus.ogsa.NotificationSinkCallback;
import org.globus.ogsa.impl.core.service.ServicePropertiesImpl;
import org.globus.ogsa.client.managers.NotificationSinkManager;

import org.gridforum.ogsi.HandleType;
import org.gridforum.ogsi.ExtensibilityType;
import org.gridforum.ogsi.ServiceDataValuesType;

import java.net.URL;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ArrayList;

public class BulletinSubscriber extends ServicePropertiesImpl implements
NotificationSinkCallback {
 Appendix A. Sample code 205

 List instanceNames;
 BulletinPortType[] bulletins;

 public static final void main(String[] args) {
 BulletinSubscriber bs = new BulletinSubscriber();
 bs.run(args);
 }

 private void run(String[] args) {

 // The base GSH and the instance names will be informed
 // as command-line arguments
 String baseGSH = args[0];

 // Build service instance references
 int instanceCount = args.length-1;
 BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
 instanceNames = new ArrayList(instanceCount);

 try {
 NotificationSinkManager notifManager =
NotificationSinkManager.getManager();
 String sinks[] = new String[instanceCount];

 for (int i=0; i<instanceCount; i++) {
 String instanceName = args[i+1];
 String GSHstr = baseGSH+"/"+instanceName;
 URL GSH = new URL(GSHstr);
 BulletinServiceGridLocator bulletinGL = new
BulletinServiceGridLocator();
 bulletins[i] = bulletinGL.getBulletinServicePort(GSH);

notifManager.startListening(NotificationSinkManager.MAIN_THREAD);
 sinks[i] = notifManager.addListener("ApprovedMessages", null,
new HandleType(GSHstr), this);

 instanceNames.add(instanceName);
 System.out.println("Subscribed to the \""+instanceName+"\"
instance.");
 };

 System.out.println("Type any key to exit.");
 System.in.read();

 // Stop listening
 for (int i=0; i<instanceCount; i++) {
 notifManager.removeListener(sinks[i]);
206 Grid Services Programming and Application Enablement

 }

 notifManager.stopListening();
 System.out.println("Not listening anymore!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /* (non-Javadoc)
 * @see
org.gridforum.ogsi.NotificationSink#deliverNotification(org.gridforum.ogsi.ExtensibilityType)
 */
 public void deliverNotification(ExtensibilityType any) throws RemoteException {
 ServiceDataValuesType serviceData = AnyHelper.getAsServiceDataValues(any);
 MessageDataType mdt = (MessageDataType)
AnyHelper.getAsSingleObject(serviceData, MessageDataType.class);

 System.out.println("New message received.\n"+mdt.getMessage());
 }
}

Example: A-8 Code for BulletinWriter.java

package com.ibm.itso.grid.gt3.bulletin.client;

import com.ibm.itso.grid.gt3.bulletin.common.stubs.service.BulletinServiceGridLocator;
import com.ibm.itso.grid.gt3.bulletin.common.stubs.BulletinPortType;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.List;
import java.util.ArrayList;

public class BulletinWriter {

 public static final void main(String[] args) {
 // The base GSH and the instance names will be informed
 // as command-line arguments
 String baseGSH = args[0];

 // Build service instance references
 int instanceCount = args.length-1;
 BulletinPortType[] bulletins = new BulletinPortType[instanceCount];
 List instanceNames = new ArrayList(instanceCount);
 Appendix A. Sample code 207

 try {
 for (int i=0; i<instanceCount; i++) {
 String GSHstr = baseGSH+"/"+args[1+i];
 URL GSH = new URL(GSHstr);
 BulletinServiceGridLocator bulletinGL = new
BulletinServiceGridLocator();
 bulletins[i] = bulletinGL.getBulletinServicePort(GSH);
 instanceNames.add(args[i+1]);
 };

 boolean go = true;
 while (go) {
 BufferedReader br
 = new BufferedReader(new
InputStreamReader(System.in));

 System.out.println("Enter the type of message you want to
submit");

 String instanceName = br.readLine();
 int instanceIndex = instanceNames.indexOf(instanceName);

 if (instanceIndex == -1) {
 System.out.println("There isn't any service instance
named "+instanceName);
 } else {
 System.out.println("Enter the message");
 String message = br.readLine();

bulletins[instanceIndex].submitApprovedMessages(message);
 }

 System.out.println("Do you want to submit another message (y/n)
?");
 char key = Character.toLowerCase((char) br.read());
 if (key != 'y') {
 go = false;
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

208 Grid Services Programming and Application Enablement

Example: A-9 Code for BulletinAdminConsole.java

package com.ibm.itso.grid.gt3.bulletin.client;

import org.globus.ogsa.utils.GridServiceFactory;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.gridforum.ogsi.OGSIServiceGridLocator;

import java.net.URL;
import java.io.*;
import java.util.*;

public class BulletinAdminConsole {

 public static void main(String[] args) {
 String addr = new String();
 if(args.length != 1) {
 System.out.println("Usage: java
com.ibm.itso.grid.gt3.bulletin.client.BulletinAdminConsole <GSH>");
 return;
 } else {
 addr = args[0];
 }

 System.out.println("WELCOME TO BULLETIN ADMIN CONSOLE...");
 System.out.println("Command Help...");
 System.out.println(">c <instance name> : to create a instance");
 System.out.println(">d <instance name> : to destroy a instance");
 System.out.println(">q : to exit this program");
 System.out.println();

 try{
 //Get command-line argument
 URL GSH = new java.net.URL(addr);

 //Get a reference to the Bulletin Service Factory
 OGSIServiceGridLocator ogsiServiceGridLocator = new
OGSIServiceGridLocator();
 Factory factory = ogsiServiceGridLocator.getFactoryPort(GSH);
 GridServiceFactory gridServiceFactory = new
GridServiceFactory(factory);

 BufferedReader buffer = new BufferedReader(new
InputStreamReader(System.in));
 Hashtable instanceStore = new Hashtable();
 Appendix A. Sample code 209

 System.out.println("please input command...");

 while(true) {
 System.out.print(">");
 String command = buffer.readLine();
 String name = new String();
 if(command.length() > 0) {
 if(command.substring(0, 1).compareTo("c") == 0 &&
command.substring(2).length() >0) {
 name = command.substring(2);
 //Get a new Bulletin Service instances
 LocatorType locatorType =
gridServiceFactory.createService(name);
 instanceStore.put(name, locatorType);
 System.out.println("create " + name);
 } else if(command.substring(0, 1).compareTo("d") == 0
&& command.substring(2).length() >0) {
 name = command.substring(2);
 //Destroy a Bulletin Serivce instances
 LocatorType locatorType = (LocatorType)
instanceStore.remove(name);
 if(locatorType != null) {

ogsiServiceGridLocator.getGridServicePort(locatorType).destroy();
 System.out.println("Instance " + name +
"destroyed");
 } else {
 System.out.println("There's no instance
called " + name);
 }
 } else if(command.compareTo("q") == 0) {
 System.out.print("All instances are going to be
killed before exit, continue? <y/n>");
 command = buffer.readLine();
 if(command.compareTo("y") == 0) {
 System.out.println("kill all
instances");
 Enumeration elements =
instanceStore.keys();
 while(elements.hasMoreElements()) {
 name = (String)
elements.nextElement();
 System.out.println("Instance "
+ name + "destroyed");
 LocatorType locatorType =
(LocatorType) instanceStore.get(name);

ogsiServiceGridLocator.getGridServicePort(locatorType).destroy();
 }
210 Grid Services Programming and Application Enablement

 System.out.println("Bye");
 return;
 }
 }
 }
 }
 } catch (Exception e) {
 System.err.println("There was error while create/destroy instance");
 e.printStackTrace();
 }
 }
}

 Appendix A. Sample code 211

212 Grid Services Programming and Application Enablement

Appendix B. Web service development

This appendix introduces the reader to the steps involved in developing a Web
service based application. Since a grid service is an extension of a Web service,
we present the development of Web services in this chapter as a prelude to our
discussion of the development of grid services, which can be found in the later
parts of this document.

B

© Copyright IBM Corp. 2004. All rights reserved. 213

Introduction
The concept of Web services is essential for grid applications, since it acts as the
main mechanism that provides the interoperability grid needs.

Thus, this appendix presents the main tasks involved in the process of
developing a Web service. It is worthwhile to mention that many tools used in this
process may also be used in the development of grid services. However, a grid
has other requirements that modify the development process, making necessary
the use of specific tools.

There are several tools available on the market to assist in the development of
Web services. We will focus on the development using the Axis tool. We have
chosen Axis for the following reasons. First, Axis is an open source tool and
popular in the development community. Second, GT3 uses Tomcat and Axis as
the default container. Third, grid service leverages many features from Axis.
Hence, familiarity with Axis will immensely aid the reader in understanding the
development of grid services using GT3 as presented in subsequent sections of
this document.

We present the various steps in building a Web service using the Axis tool with a
simple application. The same application is used in the next part of the document
where we discuss the development of a simple grid service. The use of the same
application will help in clearly illustrating the extensions needed for a Web
service to make it a grid service.

Our main focus is to illustrate the steps needed in building a Web service. We
first present the problem statement that deals with the requirements of the
application. Then, we discuss the individual steps in the development,
deployment, and monitoring of the Web service application using the Axis tool.

Development tools
In this section, we will briefly introduce the open source and openly available
tools that can be used for the Web services development. We have used these
tools for developing the application discussed in this chapter.

Tomcat
Tomcat is a servlet container. It is a reference implementation of JSP and servlet
technologies, and most of the samples in this appendix are running on Tomcat.
More information on Tomcat can be found at:

http://jakarta.apache.org/tomcat/index.html
214 Grid Services Programming and Application Enablement

http://jakarta.apache.org/tomcat/index.html

Axis
Axis is an implementation of the SOAP specification. As a SOAP engine, it is
compliant with SOAP1.1/1.2. At present, GT3 implementation takes advantage
of the Axis features. Axis is used throughout the document to develop the
samples and will be elaborated upon in later sections. More information on Axis
can be found in Appendix C, “Java2WSDL and WSDL2Java” on page 231 and at:

http://ws.apache.org/axis/

ant
ant is an open source, Java based build tool which helps in building the
development project automatically. Besides the standard tasks shipped with ant,
Axis and GT3 have their own ant tasks. Using these tasks facilitates
development work. More information on ant can be found in Appendix D, “Tasks
using ant” on page 237 and at:

http://ant.apache.org

Web services development basic steps illustrated
This section presents the tasks involved in Web services development, and
illustrates them with a sample distributed client-server application.

The main function of the server is to return ‘the message of the day’ to any client
that invokes it. Subsequent invocation of the server by the clients returns a
different message. The mechanism of choosing the next message is to be
determined by the server.

The major steps concerning a Web service development are as folllows:

Specifying Phase to define the functionalities.

Coding Phase to generate and adapt the code, WSDL and Java,
using tools like Java2WSDL.

Building Phase to compile the code WSDL, using WSDL2Java and
Javac.

Deploying Phase to deploy the WSDD files, using Java.

Testing Phase to test the application; this can be done through
some test code or some tool, like tcpmon.

The next sections explain each one of these phases.
 Appendix B. Web service development 215

http://ws.apache.org/axis/
http://ant.apache.org

Specifying
This simple application will be developed into two parts, namely a client part and
a server part. The functionality of the application will be provided by a single Web
service. A single operation of the Web service will provide the message of the
day. The server will be the service provider and implement the aforementioned
functionality. The client will be the service requestor and request the service from
the service provider by binding to the service and invoking the operation on the
Web service.

Coding
The specification of the Web services within the application must generate the
code. There are two ways in which the Web service(s) can be coded:

1. The service can be specified as a Java interface. Axis provides a tool to
generate the WSDL and the stubs that are necessary for the application
execution from the Java interface.

2. The service can be specified within a WSDL file. The WSDL files can be
created by the developer manually or obtained from a service registry, such
as the UDDI. In this case, the code is ready for the Building phase.

Generating WSDL from a Java interface
In this section, we will illustrate the steps for creating a WSDL file from a given
Java interface.

Defining the Java interface
Defining the Java interface is the first step in this process. Figure B-1 shows the
Java interface for our example application defined in the previous section.

Figure B-1 Interface: MOTD.java

After definition of the interface, the file must be compiled. It should be noted that
an interface which inherits from another interface can also be defined for the
service. The Axis tool allows an inheriting interface to be used as an input for the
Java2WSDL tool.As specified before, the tool allows selection methods from the
inheritance chain to be included in the generated Web service definition.

package com.ibm.itso.web.axis.sample;
public interface MOTD {
 public java.lang.String getMOTD();
}

216 Grid Services Programming and Application Enablement

Generating the WSDL file
In this step, the WSDL file is generated from the Java interface definition. The
following is the command line invocation of the tool for the generation of the
WSDL file for our example application:

java org.apache.axis.wsdl.Java2WSDL -o itso.wsdl -l
"http://localhost:8080/axis/services/MOTD"
-n"http://sample.axis.web.itso/MOTD"
-p"com.ibm.itso.web.axis.sample"="http://sample.axis.web.itso/MOTD"
com.ibm.itso.web.axis.sample.MOTD

The use of the following options in the above invocation must be noted:

1. The output WSDL file name is specified as itso.wsdl using the -o option. The
output file is stored under the current directory.

2. The service URL is specified as http://localhost:8080/axis/services/MOTD
using the -l option.

3. The target namespace is specified as http://sample.axis.web.itso/MOTD
using the -n option.

4. The package to namespace mapping pair is specified as
com.ibm.itso.web.axis.sample http://sample.axis.web.itso/MOTD using
the -p option.

Analysis of the generated WSDL file
In this section, we will discuss the various segments of the generated WSDL
based in the specification WSDL 1.1 generated by the Axis tool. The WSDL 1.2
specification, still in draft at the time of the prodution of this document, has
proposed extensions that include additional definition of grid services.

Figure B-2 on page 218 shows the WSDL file that is generated as a result of the
previous step:
 Appendix B. Web service development 217

Figure B-2 itso.wsdl file

In the previous section, we had specified for one WSDL file to be generated.
Hence, the above WSDL file contains both the interface and the implementation
specification. We will explain more about separating the interface and
implementation into two WSDL files in the next section.

Figure B-3 below shows the port type definition in the generated WSDL.

Figure B-3 PortType in itso.wsdl

The name of this port type is the same as the name of the interface. The name
can be changed by using the -P option. The port type contains only one
operation:getMOTD. It is the same as the function name defined in interface. The
input and output messages, namely impl:getMOTDRequest and
impl:getMOTDResponse respectively, for the operation are specified in the

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://sample.axis.web.itso/MOTD"
 xmlns:impl="http://sample.axis.web.itso/MOTD"
 xmlns:intf="http://sample.axis.web.itso/MOTD"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 >

 <wsdl:message name="getMOTDRequest">
 </wsdl:message>

 <wsdl:message name="getMOTDResponse">
 <wsdl:part name="getMOTDReturn" type="xsd:string"/>
 </wsdl:message>

..........
</wsdl:definitions>

<wsdl:portType name="MOTD">
 <wsdl:operation name="getMOTD">
 <wsdl:input name="getMOTDRequest" message="impl:getMOTDRequest"/>
 <wsdl:output name="getMOTDResponse" message="impl:getMOTDResponse"/>
 </wsdl:operation>
</wsdl:portType>
218 Grid Services Programming and Application Enablement

figure. The descriptions of the messages, including the data types of the parts of
the message, are specified in Figure B-3 on page 218. The messages and data
types are specified before the description of the port type.

Figure B-4 below shows the implementation specification for the Web service.
The implementation describe the bindings for a particular transport. In our
example, the bindings are specified for the SOAP protocol.

Figure B-4 Binding part of itso.wsdl

As can be seen in the figure, the name of the binding is MOTDSoapBinding. The
tool uses the default naming convention of the service port name followed by
SOAPBinding in generating the binding name. The name can be changed by
using the -b option. The default binding style used by Axis and also in the above
definition is RPC. The name can be changed by using the -y option.

The Service Implementation definition for our example service is shown in
Figure B-5 on page 220.

<wsdl:binding name="MOTDSoapBinding" type="impl:MOTD">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMOTD">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getMOTDRequest">
 <wsdlsoap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:itso"/>
 </wsdl:input>

 <wsdl:output name="getMOTDResponse">
 <wsdlsoap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:itso"/>
 </wsdl:output>

 </wsdl:operation>
</wsdl:binding>
 Appendix B. Web service development 219

Figure B-5 Service implementation definition in itso.wsdl

The default service name has the format of service port name followed by the
word Service. The default name has been used by the Axis tool in generating the
above service implementation specification. The service name can be changed
by using the -s option. The service port name is specified in the location set
variable and can be changed using the -S option. As can be seen from
Figure B-5, our example service utilizes the SOAP bindings and can be
accessed via the address http://localhost:8080/axis/services/MOTD.

Advanced options for WSDL generation
As was discussed earlier, two WSDL files can be generated for a single Java
interface definition. When two files are generated, the first file contains the
interface definition of the Web service while the other contains the
implementation definition. The interface defines the contract of the Web service
provided by the service provider. The implementation part defines the
implementation specifics of the service. The same contract can be implemented
in different ways depending on the implementation and protocol chosen. The
interface WSDL file can be generated by specified by using -w and setting it to
the value Interface. Similarly, the implementation WSDL file can be generated
by setting the value of the -w option to implementation. The interface WSDL
contains the type, message and port type definitions of the Web service. The
implementation WSDL contains the bindings and services definition.

The Java interface that is used to generate the WSDL file can potentially inherit
from other interfaces. In fact, it could be the leaf of an inheritance tree of Java
interfaces. When an interface inherits from other interfaces, the Axis tool
navigates the inheritance chain and includes all the inherited methods in the
WSDL definition. The inherited methods are included in addition to the methods
directly defined in the given Java interface. However, the tool can be instructed to
ignore the inherited methods by using the -c option.

Building
This phase generates the client stub and server skeleton. As will be shown later
in this chapter, Axis provides tools to generate the client side stub and the server

<wsdl:service name="MOTDService">
 <wsdl:port name="MOTD" binding="impl:MOTDSoapBinding">
 <wsdlsoap:address
 location="http://localhost:8080/axis/services/MOTD"/>
 </wsdl:port>
</wsdl:service>
220 Grid Services Programming and Application Enablement

http://localhost:8080/axis/services/MOTD

side skeleton from the service specification. The stubs provide the necessary
runtime for the client program to communicate with the server in the
programming language of the client. The server skeleton allows the server
program to be transparent of the client programming language. It captures the
metadata, assists the runtime in data conversions, and forwards the incoming
service requests to the server implementation.

Moreover, the server side and the client side functions of the Web service are
developed in Java, compiled and packaged. Axis provides the necessary tools.

Generating Java code from a WSDL file
In order to develop a Web service, its interface must be defined in a WSDL file.
Subsequently, the client and server side code are implemented based on the
WSDL definition. In some instances, an existing server side implementation is
used. When an existing server implementation is used or is wrappered to
develop a Web service, a previously defined Java interface can be used in the
generation of the WSDL definition file. In the previous section, we discussed the
process of creating a WSDL definition from a Java interface definition.

Besides generating a WSDL from a Java interface, the service provider can
choose to create it manually or with some other tool, such as the WebSphere
Studio Application Developer (WSAD). Since WSDL is much more expressive
than a Java interface definition, some operations or requirements that cannot be
expressed in Java can be expressed in WSDL. Hence, it is necessary in some
instances to define the WSDL file directly.

Developers implementing the service requestor interface can primarily obtain the
WSDL file in the following ways:

1. From a UDDI registry. The service requester can search the UDDI to find the
appropriate service provider and the corresponding WSDL.

2. From service providers directly. For example, a URL, such as
http://localhost:8080/axis/services/MyService?WSDL for a WSDL can be
obtained from the service provider. Subsequently, the WSDL file can be
accessed via a browser and saved.

In this section, we will focus on the process of creating the client-side stub and
server-side skeleton Java code from a given WSDL definition. We will illustrate
the process using the example WSDL that was generated in the previous
section.

Generating stub and skeleton code from WSDL
WSDL2Java is a utility within the Axis toolkit that uses the information specified in a
given WSDL file and generates Web service skeleton and stub code.
 Appendix B. Web service development 221

The client stub acts as a proxy and enables the client program to invoke grid
services in their own programming language. Subsequently, the client stub
transforms the data and the message provided by the client into the data format
and protocol specified in the WSDL for communicating with the server.

The server skeleton captures the metadata of the service based on the WSDL
information and provides it to the runtime for converting the incoming data and
message into the format suitable for server implementation. Further, it forwards
the incoming request to the server implementation.

The following is the command line invocation of the WSDL2Java utility for
generating the stub and the skeleton for the example WSDL that was generated
in the previous section.

java org.apache.axis.wsdl.WSDL2Java -o . -d Session -s -S true
-N”http://sample.axis.web.itso/MOTD”=”com.ibm.itso.web.axis.sample”
itso.wsdl

The use of the following options in the above invocation must be noted:

1. The location of the generated code is specified using the -o option. As
specified above, the code will be generated in the current directory.

2. The scope of the service deployment is specified using the -d option. As
specified above, the service will be deployed within a Session scope.

3. The -s option instructs the utility to generate server side skeleton code as
well.

4. The -S option instructs the utility to deploy the server side skeleton within the
Axis environment.

5. The Java package to the namespace mapping pair is specified using the -p
option. In our example, the package com.ibm.itso.web.axis.sample is mapped
to http://sample.axis.web.itso/MOTD namespace.

Analysis of the generated files
Figure B-6 below lists the various files that are generated as a result of the
execution of the utility specified in the previous section.

Figure B-6 Generated files from WSDL

The following list briefly describes the content of each of the generated files:

$>ls
deploy.wsdd MOTDService.java MOTDSoapBindingSkeleton.java
MOTDServiceLocator.java MOTDSoapBindingStub.java
MOTD.java MOTDSoapBindingImpl.java undeploy.wsdd
222 Grid Services Programming and Application Enablement

1. The MOTDService.java file contains the interface of our service and is
implemented by the MotDServiceLocator class.

2. The MOTDServiceLocator.java file contains the implementation of the
MOTDServiceLocator class and aids the client in locating the reference to the
service before invoking any operations on the service.

3. The MOTDSoapBindingSkeleton.java file contains the server side skeleton
code.

4. The MOTDSoapBindingStub.java file contains the client side stub code.

5. The MOTD.java file contains the Java interface for the service to be used by
both the client and the server implementation.

6. The MOTDSoapBindingImpl.java file contains a scaffold for the server
implementation. The developer can implement the server side implementation
code in this file.

7. The deploy.wsdd file contains the XML based deployment descriptor that is
used for deploying the service in the container.

8. The undeploy.wsdd file contains the XML based deployment descriptor that is
used for undeploying the service from the container.

It should be noted that our example service does not contain any complex data
types. If a service requires a complex data type then the schema of the data type
must be specified in the WSDL file. If a complex data type is defined within the
WSDL, the utility additionally generates a Java bean class for each of the data
types specified.

Implementing the server side code
In this section, we will elaborate on the server side implementation of our
example Web service. As was stated in the previous section, the
MOTDSoapBindingImpl.java file generated by the WSDL2Java utility provided the
scaffold for implementing the server functionality. Figure B-7 on page 224 shows
the content of the MOTDSoapBindingImpl.java file with our added
implementation. As can be seen in the figure, the MOTDSoapBindingImpl class
implements the MOTD interface that was generated. We define a private String
array variable msgs to store a set of predefined messages. The implementation
of the getMOTD() method retrieves the next message from the array and returns
it to the client.
 Appendix B. Web service development 223

Figure B-7 New MOTDSoapBindImpl.java

Note: The code in the Web service below uses a static int variable, making the
service stateful. This is generally discouraged because the Web service
container is allowed to create as many instances of the service as it desires,
and connect any incoming request with any instance. This would cause chaos
for most stateful requester-provider relationships, but in the case of our trivial
example, there is no such thing as an “incorrect” message from the list being
delivered to a requester.

package com.ibm.itso.web.axis.sample;
public class MOTDSoapBindingImpl implements
com.ibm.itso.web.axis.sample.MOTD{
 private static int lastOne=0;
 private static String msgs[]={

"And 1.1.81 is officially BugFree(tm), so if you receive any bug-reports
on it, you know they are just evil lies.",
"As usual, this being a 1.3.x release, I haven't even compiled this
kernel yet. So if it works, you should be doubly impressed.",
"How should I know if it works? That's what beta testers are for. I
only coded it.",
"I've run DOOM more in the last few days than I have the last few months.
I just love debugging ;-)",
"If you want to travel around the world and be invited to speak at a lot
of different places, just write a Unix operating system.",
"We all know Linux is great...it does infinite loops in 5 seconds.",
"When you say 'I wrote a program that crashed Windows', people just stare
at you blankly and say 'Hey, I got those with the system, *for free*'",
"...you might as well skip the Xmas celebration completely, and instead
sit in front of your linux computer playing with the all-new-and-improved
linux kernel version.",
"I'm an idiot.. At least this one [bug] took about 5 minutes to find..",
"World domination. Fast"

};
 public java.lang.String getMOTD() throws java.rmi.RemoteException {
System.out.println("MOTDSoapBindingImpl ().getMOTD(): entry");
 lastOne = lastOne % 10;
 String motd = msgs[lastOne];
System.out.println("MOTDSoapBindingImpl ().getMOTD(): Selected motd '" +
motd + "'");
 lastOne++;
 return motd;
 }
}

224 Grid Services Programming and Application Enablement

After writing the server side functionality, the MOTDSoapBindingSkeleton.java
file is compiled with the aid of the Java compiler and necessary dependent files
are included.

Implementing the client side code
In this section, we will present and discuss the client side implementation. The
client is the service requestor and invokes the Web service provided by the
server. Figure B-8 shows the client implementation for our example application
that uses the client side stub generated by the WSDL2Java utility. As shown in the
figure, the client locates the reference to the MOTD Web service by using the
instance of the MOTDServiceLocator class. The instance reference to the MOTD
service is obtained by invoking the getMOTD() method. The operation on the
service is invoked on the binding reference of the service. The call to the
getMOTD() method invokes the operation.

Figure B-8 Sample code using stub code

Figure B-9 on page 226 shows the implementation of the client of our example
application that does not use the generated client side stub. Instead, the client
uses the JAVAX-RPC API.

package com.ibm.itso.web.axis.sample;
import com.ibm.itso.web.axis.sample.MOTD
public class MOTDClient {

public static void main(String [] args) {
try{

MOTD binding;
binding = new MOTDServiceLocator().getMOTD();
java.lang.String value = null;
value =((MOTDSoapBindingStub)binding).getMOTD();
System.out.println("The result is:"+value);

}catch(Exception e){
e.printStackTrace();

}
}

}

 Appendix B. Web service development 225

Figure B-9 Sample code using JAVAX-RPC

As can be seen in the code of Figure B-9, the client generates the service and a
generic call. Subsequently, it sets the endpoint address of the service and the
particulars of the operation before invoking the service. As is evident from a
comparison of the above two client implementations, the use of the generated
client side stubs simplifies the programming. The client side stub hides the
details of the composition of the operation from the client.

Deploying and testing the Web service
During this phase, the code developed along with the generated code and other
necessary libraries is packaged and deployed in the container and server for
execution. The deployment is tested and the client and server communication is
monitored to ensure proper deployment and execution. Axis provides the
necessary tools for this step as well.

Analyzing the generated WSDD files
As was shown in the prior section, the WSDL2Java tool generates two files, namely
deploy.wsdd and undeploy.wsd, to assist in the deployment and un-deployment
of the Web service, respectively. These files describe the various chosen options
for deploying and un-deploying the Web service. The AdminClient utility provided
by Axis manages the Web services and uses the descriptors files for deployment

package com.ibm.itso.web.axis.sample;
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;
public class SimpleClient{

public static void main(String [] args) {
try {

String endpoint = "http://localhost:8080/axis/services/MOTD";
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName(new QName("http://sample.axis.web.itso/MOTD",
"getMOTD"));
String ret = (String) call.invoke(new Object[] { });
System.out.println("The result is:'" + ret + "'");

} catch (Exception e) {
System.err.println(e.toString());

}
}

}

226 Grid Services Programming and Application Enablement

and un-deployment of the Web service. Figure B-10 below shows the
deployment descriptor generated for deploying our example.

Figure B-10 Deploy.wsdd

As shown in the figure, the namespaces that define the various tags and values
used in the descriptor are first defined. The definition of the service element is
similar to the one in the WSDL file. Subsequently, the name of the service, the
provider of the service, the style of communication between the client and the
service and usage of the encoding are specified. Additional particulars are
provided as parameter values.The target namespace for the service, service
element, port type for the service, the name of the class to be invoked for
dispatching the service requests, the port type of the Web service, the set of
allowed methods to be invoked, and the scope of the service are specified.

Deploying the Web service
Figure B-11 shows the command to deploy our example Web service. The name
of the deployment descriptor is provided as a parameter to the command.

Figure B-11 Deploy Web service on Axis by AdminClient

It should be noted that the above command processes the deployment descriptor
and registers the service within the Axis environment. Various implementation
class files must be copied into the appropriate directory before the service is

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<!-- Services from MOTDService WSDL service -->
<service name="MOTD" provider="java:RPC" style="rpc" use="encoded">
 <parameter name="wsdlTargetNamespace"
value="http://sample.axis.web.itso/MOTD"/>
 <parameter name="wsdlServiceElement" value="MOTDService"/>
 <parameter name="wsdlServicePort" value="MOTD"/>
 <parameter name="className"
value="com.ibm.itso.web.axis.sample.MOTDSoapBindingSkeleton"/>
 <parameter name="wsdlPortType" value="MOTD"/>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="scope" value="Session"/>
</service>
</deployment>

$>java org.apache.axis.client.AdminClient deploy.wsdd
Processing file deploy.wsdd
<Admin>Done processing</Admin>
 Appendix B. Web service development 227

made operational. In our example, the class files are copied to the Axis
Webapp/WEB-INF/classes directory.

Testing the Web service application
Once the service is successfully deployed, the deployment can be verified and
the service tested. The list of installed services can be browsed with the aid of a
browser. Figure B-12 shows the list of services installed in our example
installation.

Figure B-12 List installed Web services

After verifying that the necessary services are installed, the service can be
tested. Figure B-13 shows the result of the execution of the client application
programs discussed earlier.

Figure B-13 The result of client executions

As can be seen, the execution of the client obtains the message of the day from
the Web service and displays it on the screen as expected. In the next section,

$>java com.ibm.itso.ws.axis.sample.MOTDClient
The result is:We all know Linux is great...it does infinite loops in 5
seconds.
$>java com.ibm.itso.ws.axis.sample.SimpleClient
The result is:I'm an idiot.. At least this one [bug] took about 5 minutes to
find..
228 Grid Services Programming and Application Enablement

we will demonstrate the use of the tcpmon utility for inspecting the messages
exchanged between the server and the client.

Using tcpmon
In this section, we describe the functioning of a monitoring utility from Axis. The
messages that are transferred between the service requestor and the service
provider can be intercepted and inspected with the aid of the tcpmon utility. The
tool can be launched by invoking the following command:

java org.apache.axis.utils.tcpmon

In order to view the SOAP messages that are transferred, the tcpmon must be set
to listen on port 8081. The messages must be transferred from localhost:8080 to
localhost:8081.The endpoint of the service must be modified to be on port 8081.
Appropriate modifications to the service endpoint either in the deployment
description or the client code must be made. The messages monitored by the
tcpmon are displayed on the screen. Figure B-14 on page 230 shows the result of
a monitoring session.
 Appendix B. Web service development 229

Figure B-14 SOAP messages between server and client
230 Grid Services Programming and Application Enablement

Appendix C. Java2WSDL and WSDL2Java

This appendix describes the key utilities that are part of the Axis toolkit,
Java2WSDL and WSDL2Java. The use of these tools in building our Web
services application is illustrated. In addition to the functionality of the individual
utility, we will present the various options that can be specified in the invocation
of the utility. Understanding of the options will aid the user in appreciating the
finer details of the utility’s function.

C

© Copyright IBM Corp. 2004. All rights reserved. 231

Java2WSDL
Java2WSDL is one utility in the Axis toolkit suite. It converts a Java interface into a
WSDL file. In Java, a class to be implemented is specified using a Java interface.
Since WSDL is more involved in its specification than a Java interface, this tool
provides Java developers with a mechanism to generate Web service
specifications in WSDL from a given Java interface.

This tool comes in handy when wrappering an existing Java implementation as a
Web service. The Java interface defining all the public functions of the given
class will be used as the input in generating the corresponding WSDL file for the
service. The tool allows the user to selectively choose the methods to be
exported from the Java interface. Hence, a user can only make a subset of the
publicly available methods as Web service operations.

Java2WSDL can generate one or two WSDL file(s) based on user’s input. If one
output file is desired, then the generated WSDL file contains the port type,
binding and service implementation specifications. On the contrary, when two
output files are desired, the tools generates two WSDL files; the first file defines
the interface and the second file defines the implementation.

The options to be used in the invocation of the utility and the corresponding
explanations are shown in Table C-1.

Table C-1 Java2WSDL options

Option Meaning

-I, --input <argument> Define the input WSDL file

 -o, --output <argument> Define the output WSDL file

 -l, --location <argument> Define the location of the class file

-P, --portTypeName <argument> Define the port type name. If is not
specified, the class name is used by the
utility instead

-b, --bindingName <argument> Define the binding name. If it is not
specified, the portName+”SOAPBingding”
are used by the utility instead

-S, --serviceElementName <argument> Define the service name. If not specified,
using the portName+”Service”

-n, --namespace <argument> Define the target NameSpace in target
WSDL
232 Grid Services Programming and Application Enablement

-p, --PkgtoNS <argument>=<value> Define the convert pair between package
and NameSpace value

-m, --methods <argument> Define the method(s) to export. Methods
are separated by space or comma

-a, --all Export all allowed methods in inherited
class

-w, --outputWsdlMode <argument> Define the output WSDL Mode: ALL,
Interface or Implementation

-L, --locationImport <argument> Define the place where the interface
WSDL file located

-N, --namespaceImpl <argument> Define the target namespace for
implementation WSDL

-O, --outputImpl <argument> Define the output implementation WSDL

-i, --implClass <argument> Define the class that contain
implementation code

-x, --exclude <argument> Define the methods which will not be
export. Commands are separated by
space or comma

 -c, --stopClasses <argument> if --all is setting, -c define the class names
that will stop inheritance search. names
are separated by space or comma

 -T, --typeMappingVersion <argument> Define the value of sopaAction field. One
of DEFAULT , OPERATION or NONE.

 -y, --style <argument> Define the WSDL binding style. One of
DOCUMENT, RPC or WRAPPED

-u, --use <argument> Define the binding style. One of LITERAL
or ENCODED

-e, --extraClasses <argument> Define the class names to be added,
separated by space or comma

-C, --importSchema Define an XML schema that will be
imported into target WSDL

Option Meaning
 Appendix C. Java2WSDL and WSDL2Java 233

WSDL2Java
WSDL2Java is another utility in the Axis toolkit suite. As the name suggests, it
converts a WSDL file into a Java file. Given a WSDL file with specifications of a
Web service, it generates the necessary client stub. The client application
invokes the client stub in order to communicate with the Web service.
Additionally, with the use of appropriate options, it can generate server side
skeleton code as well. The server skeleton dispatches the incoming service
requests from the client to the server implementation.

The various options along with the corresponding explanations are shown in
Table C-2.

Table C-2 WSDL2Java options

Option Meaning

-n, --noImports Do not generate code for the import
WSDL

-O, --timeout <argument> Define the time-out in second. (Default
value is 45 while -1 mean disable)

 -D, --Debug Print debug information

-W, --noWrapped Define support “wrapped” document/literal
no not

-s, --server-side Define generate server-side code

-N, --NStoPkg <argument>=<value> Define the pair between namespace and
package

-f, --fileNStoPkg <argument> Define the property file that contain
NameSpace and Package pairs

-p, --package <argument> Define the package name used in
generated code, omit all mappings

-o, --output <argument> Define the output location of the
generated code

-d, --deployScope <argument> Define the scope of the deployment in
deploy.wsdd. One of “Application”,
“Request”, “Session”

-t, --testCase Generate Junit testcase class

-a, --all Generate all elements in WSDL file
234 Grid Services Programming and Application Enablement

-T, --typeMappingVersion <argument> 1.1 or 1.2. 1.1 mean SOAP 1.1 JAX-RPC.
1.2 mean SOAP 1.1 encoded

-F, --factory <argument> Define the classname of the factory

-H, --helperGen Generate helper classes

-U, --user <argument> Define the user name for accessing the
WSDL

-P, --password <argument> Define the password for accessing the
WSDL

Option Meaning
 Appendix C. Java2WSDL and WSDL2Java 235

236 Grid Services Programming and Application Enablement

Appendix D. Tasks using ant

This appendix introduces some of the key tasks provided by the ant - an Axis
tool that helps to automate the build process. In a typical Web services
development scenario, the developer has to periodically execute the various
utilities. The manual process of entering the same commands several times can
be laborious and error-prone. The ant tool is a Java based build tool similar to
the make tool in Unix systems. Several targets, dependencies among the targets,
and commands for the execution of tasks for building the target can be specified
in a build file. The tool controls the build process based on the information
specified in the build file. More information about ant can be found at:

http://ant.apache.org

D

© Copyright IBM Corp. 2004. All rights reserved. 237

http://ant.apache.org

axis-wsdl2java
The axis-wsdl2java task is similar in function to the WSDL2Java utility described
earlier. When triggered, it generated the client stubs and server side skeletons
from a WSDL description.

The various options to be used with the task are similar to the options of Axis
utility WSDL2Java and are described in the table below.

Table D-1 axis-wsdl2java option

Options Meaning Default Value

all Whether to generate a
reference element or not

false

debug Whether to generate
debug output or not

false

deployscope Define the scope in
deploy.wsdd

factory Define a class that had
implement
GeneratorFactory interface

helpergen Define generate separate
Helper classes or not

namespacemappingfile Define the map file which
contain the map between
package and namespace

NStoPkg.properties

noimports Define generate code from
imported WSDL files or not

false

output Define output directory

serverside Define generate server
side binding or not

false

skeletondeploy Define use skeleton (true)
or implementation (false) in
deploy description file.

false

testcase Define generate Junit
testcase or not

false

timeout Define the time-out for
URL retrieval

45 second
238 Grid Services Programming and Application Enablement

The following shows the usage of the axis-wsdl2java task in the build file for our
example development.

- <target name="generateJava">
- <axis-wsdl2java output="${src.dir}" deployscope="Session"
serverside="true" skeletondeploy="true" url="${WSDLFileName}">
 <mapping namespace="${targetNS}" package="${Package}" />
 </axis-wsdl2java>
 </target>

As can be seen, the target name is specified as generateJava. In order to build
the target, the axis-wsdl2java must be executed. The various options for the tool
are specified as well.

axis-java2wsdl
The axis-java2wsdl task is similar in function to the Java2WSDL utility described
earlier. When triggered, it generated a WSDL description from a Java interface.

The various options to be used with the task are similar to the options of Axis
utility Java2WSDL and are described in Table D-2.

Table D-2 axis-java2wsdl options

typemappingversion Define the type mapping
registry(1.1/1.2)

1.1

url Define the place WSDL file
located

verbose Define generate verbose
output or not

false

Options Meaning Default Value

Option Meaning Default Value

bindingname Define the binding name servicePortName +
"SoapBinding"

classname Define the classname

exclude Define the methods that
will not be excluded from
WSDL file
 Appendix D. Tasks using ant 239

extraclasses Define the class names
that will be used

implclass Define the implement class
to get some debug
information

input Define other WSDL which
will be import into the
destination

location Define the URL of service
location

locationimport Define the location of
interface WSDL

methods Define the methods that
will be exported to WSDL
file

namespace Define the target
namespace

namespaceimpl Define the namespace of
implement WSDL

output Define the name of output
WSDL

outputimpl Define the name of output
implement WSDL file

porttypename Define the name of port
type

class name

serviceelementname Define the service name

serviceportname Define the service
portname

stopclasses Define the classes that
stop inheritance search

style Define the style of WSDL.
One of the following value:
RPC, DOCUMENT,
WRAPPED

Option Meaning Default Value
240 Grid Services Programming and Application Enablement

The following shows the usage of the axis-java2WSDL task in the build file for our
example development

- <target name="generateWSDL" depends="compileInterface">
- <axis-java2wsdl classname="${PackageName}.${InterfaceName}"
namespace="${targetNS}" output="${WSDLFileName}"
location="${ServiceLocation}">
 <mapping namespace="${targetNS}" package="${Package}" />
</axis-java2wsdl>
 </target>

As can be seen, the target name is specified as generateWSDL. This task
depends on another task, namely, compileInterface. In order to build the target
genereateWSDL , axis-java2WSDL must be executed. The various options for the
tool are specified as well. It should be noted that in order to build a target, the tool
ensures that the depending targets are built first. Hence, in the usage above, the
compileInterface target will also be built.

axis-admin
axis-admin is another ant task. This task can be used for administering the
server. The options to be used with this task are shown in Table D-3.

Table D-3 Axix-admin options

typemappingversion Define the default type
mapping registry. One of
the following value: 1.1, 1.2

1.1

use Define the user name to
access WSDL file

useinheritedmethods Define export the methods
got from inheritance
search

false

Option Meaning Default Value

Options Meaning Default

debug Define working in debug
mode or not

failonerror Define halt or not if fails false

fileprotocol Define that simple file
protocol will be used
 Appendix D. Tasks using ant 241

hostname Define the hostname

newpassword Define the new password.
Only working while
action=passwd

password Define the password

port Define the port number

servletpath Define the path of admin
servlet

transportchain Define the transportchain

url Define the URL of
AxisServlet

username Define the username

xmlfile Define the XML file that will
be processed

Options Meaning Default
242 Grid Services Programming and Application Enablement

Appendix E. Delegation

This appendix presents some complementary considerations about delegation
and inheritance in grid development environments.

E

© Copyright IBM Corp. 2004. All rights reserved. 243

Delegation and operational providers
In the basic grid service presented in Chapter 4, “Grid services development” on
page 37, grid services extend from the standard GridServiceImpl class. This is
illustrated in Figure E-1.

This GridServiceImpl class contains the base functionality of a grid service. A
new grid service inherits this base functionality from GridServiceImpl and
extends that class by adding additional functionality which is specific to the
application or this particular grid service.

The idea is that the set of base functionality that all grid services must implement
is contained in the base GridServiceImpl class so that developers of new
services only need to focus on new application specific business logic and not on
implementing the standard grid service functions. This also isolates applications
and developers from the GridService implementation which allows the base
GridService implementation to change without requiring code changes for
classes, which extend the base GridServiceImpl class.

Notice in Figure E-1 that the implementation class only contains application
specific methods. All methods associated with a grid service implementation are
encapsulated in the GridServiceImpl class which the implementation class
extends.

Figure E-1 Inheritance from GridServiceImpl

Container

GridServiceImpl

+add()
+subtract()
+multiply()
+divide()

«implementation class»
CalculatorImpl

«extends»

CalculatorPortType
244 Grid Services Programming and Application Enablement

This is a standard Object Oriented Design (OOD) approach and was adequate
for the basic grid service examples presented so far. However, it does have
limitations.

Suppose that a developer wants to expose the functionality of an existing Java
class as a grid service. This is a realistic scenario since there is an abundance of
existing code and applications being integrated into the grid infrastructure. From
the Java developer’s perspective, the approach would be to extend the base
Java class which contains the functionality the developer wishes to expose as a
grid service. However, to implement a grid service, the previous section indicated
that a grid service developer must extend the GridServiceImpl class to inherit the
basic grid service functionality.

As seen in “Service implementation” on page 44, multiple inheritance is not
allowed in Java or considered a good design approach; the grid service
developer would need to find another solution to this problem. So how would a
developer expose an existing Java class as a grid service?

The answer to this question is to use the delegation approach. The delegation
approach solves this problem and provides a modular way for developers to
distribute operations into several classes. Each of these classes is called an
Operational Provider. Methods which provide similar operations can be grouped
into functional categories and saved in an Operational Provider class which
implements the Operational Provider interface.

In the following example, the calculator implementation (CalculatorImpl) methods
have been grouped into basic calculator functions and scientific calculator
functions. The functionally similar methods, in this case basic calculator methods
or scientific calculator methods, are grouped into Operational Provider classes.
 Appendix E. Delegation 245

Figure E-2 Delegation using Operational Providers

Note that the classes in Figure E-2 do not extend any base class. They only have
to implement the OperationalProvider interface. This would allow the grid service
developer to extend an existing Java class to gridify it or encapsulate it in a grid
service. The example shown in Figure E-3 on page 247 illustrates the inheritance
approach and demonstrates that an inheritance implementation must extend
GridServiceImpl, which precludes it from extending an existing base Java class,
thereby turning it into a grid service.

Container

+add()
+subtract()
+multiply()
+divide()

«implementation class»
BasicCalculatorImpl

+sine()
+cosine()
+tangent()

«implementation class»
ScientificCalculatorImpl

OperationalProvider

OperationalProvider
246 Grid Services Programming and Application Enablement

Figure E-3 Can not extend from an existing Java class and from GridServiceImpl

Figure E-4 on page 248 illustrates an Operational Provider class extending an
existing Java BasicMath class. The CalculatorImpl can use an existing
BasicMath class in its implementation, thus reducing the development and test
time required. Note that in this approach, the implementation class does not have
to extend the GridServiceImpl class.

Container

GridServiceImpl

+add()
+subtract()
+multiply()
+divide()

«implementation class»
CalculatorImpl

«extends»
+add()
+subtract()
+multiply()
+divide()

BasicMathClass

«extends»

CalculatorPortType
 Appendix E. Delegation 247

Figure E-4 The delegation model using Operational Providers supports the creation of a
grid service from an existing Java class

The question comes to mind: what is providing the basic grid service functionality
that was previously provided by GridServiceImpl? Does each Operational
Provider class now need to implement the basic grid service functions that were
previously provided by inheriting this functionality from the GridServiceImpl
class? The answer is that GridServiceImpl functionality is still present and can be
provided by the container. This frees the newly developed grid service from
having to extend this GridServiceImpl class and allows the developer to focus on
application specific business logic or extend an existing Java class to expose its
functionality to the grid. Providing the GridServiceImpl functionality from the
container is accomplished by updating the deployment descriptor to inform the
container that it will provide the basic functionality of a grid service that was
provided by GridServiceimpl in the inheritance approach.

The following line in the deployment descriptor handles this task:

Example: E-1 GridServiceImpl identified as the base class in the deployment descriptor

<parameter name="base-className"
value = org.globus.ogsa.impl.ogsi.GridServicImpl/>

Container

+add()
+subtract()
+multiply()
+divide()

«implementation class»
BasicCalculatorImpl

OperationalProvider

+add()
+subtract()
+multiply()
+divide()

BasicMath

«extends»
248 Grid Services Programming and Application Enablement

As you see in Example E-1 on page 248, the value of the base-className
parameter is GridServiceIImpl.

Now the grid service does not need to extend the GridServiceImpl class; it can
simply implement the Operational Provider interface as show below in the
Operational Provider Example E-2.

Example: E-2 Implementing Operational Providers

public class myclass implements OperationalProvider

By way of contrast to the inheritance method presented previously, see the
following example.

Example: E-3 Inheritance from GridServiceImpl

public class myclass extends GridServiceImpl

As mentioned previously, the class must implement the Operational Provider
Interface. The OperationalProvider interface contains two methods that need to
be implemented in any implementation of that interface. These two methods rely
on a private property called Operations. This private Operations property
identifies what operations are provided by the class.

The two methods from the OperationalProvider interface that must be
implemented are initialize and getOperations. The initialize method initializes the
object while the getOperations method returns a list of operations that are
provided by the class. The list of operations is returned in an array of QName[].
The list can be identified in several ways. If a class has a single operational
provider then a wildcard can be used in its operations property, as shown in
Example E-4:

Example: E-4 Single operational provider identified with a wildcard in the operations
property

private static final QName[] operations = new QName[] {new QName("","*")

If the grid service has more than a single operation then each operation should
be individually listed in the Operations property. See Example E-5 on page 250.
 Appendix E. Delegation 249

Example: E-5 Multiple operations, each listed individually

private static final QName[] operations = new QName[] {
new QName("", "method_name_1"),
new QName("", “method_name_2”),
new QName("", “method_name_3”),
…
 } ;

For example, the following Calculator class demonstrates an approach for listing
each operation provided in the Operations property. Notice that the following
operations are identified in Example E-6: add, subtract, multiply, and divide.

Example: E-6 Code sample showing multiple operations listed individually

package com.ibm.itso.gt3.providers.impl;

import org.globus.ogsa.GridServiceBase;
import org.globus.ogsa.GridServiceException;
import org.globus.ogsa.OperationProvider;
import org.globus.ogsa.GridContext;
import java.rmi.RemoteException;
import javax.xml.namespace.QName;

public class BasicCalculatorProvider implements OperationProvider {
// Operation provider properties
private static final QName[] operations =

new QName[]{new QName[] {
("", "add"),
(““, “subtract”),
(““, “multiply”),
(““, “divide”))

};

private GridServiceBase base;
}

// Operation Provider methods
public void initialize(GridServiceBase base) throws GridServiceException
{

this.base = base;
}

public QName[] getOperations()
{

return operations;
}

250 Grid Services Programming and Application Enablement

private int value = 0;

public void add(int a) throws RemoteException
{

value = value + a;
}

public void subtract(int a) throws RemoteException
{

value = value - a;
}

public void multiply(int a) throws RemoteException
{

value = value * a;
}

public void divide(int a) throws RemoteException
{

value = value / a;
}

public int getValue() throws RemoteException
{

return value;
}

}

The deployment descriptor would also need to inform the container that the
implementation of the methods in the OperationalProvider interface will be found
in the new grid service implementation of the OperationalProvider interface. This
is accomplished by updating the deployment descriptor with the following lines
as illustrated in Example E-7.

Example: E-7 Deployment descriptor update

<parameter name="instance-operationalProviders" value =
<path.Provider>/>

The deployment descriptor must also specify the port type of the new grid
service. This is required since the new grid service does not explicitly declare
that it implements the port type. This is accomplished by updating the
deployment descriptor with the following line, shown in Example E-8 on
page 252.
 Appendix E. Delegation 251

Example: E-8 Specifying the port type in the deployment descriptor

<parameter name="instance-className" value = <path.portType>/>

In summary, the following changes are required in the deployment descriptor
(Example E-9).

Example: E-9 Changes required in the deployment descriptor

<parameter name="instance-className" value = <path.portType>/>

<parameter name="instance-operationalProviders" value = <path.Provider>/>

<parameter name="base-className"
value = org.globus.ogsa.impl.ogsi.GridServicImpl/>

Note that the changes to the grid service described above are all in the service
implementation, which is transparent to the clients or users of this grid service.
252 Grid Services Programming and Application Enablement

Appendix F. Service Browser

This appendix presents a brief overview of the Service Browser utility. Working
as a generic grid client application, this GUI tool might be used for testing and, to
some extent, debugging the basic functionality of every grid service. Additionally,
the fact that this tool is shipped as a standard GT3 component makes it a good
choice for quick tests.

F

© Copyright IBM Corp. 2004. All rights reserved. 253

Introduction
The Service Browser tool has been conceived to work as a generic client-side
application. Thus, it provides, by means of a user-friendly GUI, the basic
operations that might be performed by any client in a grid service. Its most
powerful feature, which is its ability to test remote method invocations from a
runtime generated graphical form, makes it possible for services to be tested
before any piece of real client code is written.

In addition to this feature, the Service Browser is capable of creating and
destroying service instances, which might be useful for testing if a service has
been correctly deployed, and there are facilities to check the contents of Service
Data Elements.

In the next sections, all of these operations will be briefly introduced and, when
applicable, demonstrated with a real grid service.

Basic operations
To start the Service Browser, simply type:

Figure F-1 Starting the Service Browser

Do this in the machine where the services to be tested have been deployed.
Shortly, a graphical user interface similar to the one presented in Figure F-2 on
page 256 should be displayed.

The main panel of the Service Browser has several sets of graphical controls.
These sets can be briefly described as follows.

1. The set of buttons located at the top of the panel are the main controls of the
Service Browser. Their functionality includes navigational facilities (Back and
Forward buttons) and window management (New Window, Close and
Refresh). The check box labeled Show dynamic gui is explained later in this
section.

2. The text field located right beneath this first set of buttons is the field where
you should specify the URI of the service to be inspected. When starting the
Service Browser, the default service under inspection is shown. After setting
a new service URI, the Go button has to be clicked for the panel to be
updated.

$ cd $GLOBUS_LOCATION
$ globus-service-browser
254 Grid Services Programming and Application Enablement

3. Below the service URI text field there is a sub-panel with three tabs. Each tab,
namely Services, WSDL and Service Data, presents a particular set of
controls for monitoring and managing the service specified.

a. The Services tab has four sets of controls:

• The first one, enclosed in a frame named Message Security, is used to
monitor and manage secure grid services as they address
authorization and authentication issues

• The second set contains controls that are used for querying the service
data of a service as a way to search for services

• The third set contains two tabs where the URIs of the services currently
being monitored are displayed

• The fourth, enabled only when the Show dynamic gui check box is
selected, presents a set of fields and buttons that are dynamically
generated according to the port type of the currently inspected service.

b. The WSDL tab displays the WSDL definition of the service that is pointed
to by the instance-schemaPath property of the service’s deployment
descriptor file.

c. The Service Data tab contains a table where all the information about all
the Service Data Elements of the service is presented. Additionally, a text
area displays further information about the selected Service Data
Element.
 Appendix F. Service Browser 255

Figure F-2 The main Service Browser window

An alternative way to choose a particular service for inspection is to double-click
its name in the table located under the Services tab. Doing so makes the panel
update its state to the newly selected service and generates the proper dynamic
GUI if the Show dynamic gui check-box is selected.

Figure F-3 on page 257 shows a screen shot taken from the portion of the
window that houses the dynamically generated GUI. The entry that has been
chosen to be inspected in this example was the MOTDFactory. As a factory, this
service exports a method for the creation of service instances that can be
invoked by clicking the button Create Instance.

GSH of the current service. If you want to
request a new serviice just type a new URI,

and click on go button
256 Grid Services Programming and Application Enablement

Figure F-3 Inspecting the MOTDFactory service with the Service Browser

When an instance is created, a new window similar to the main panel appears,
displaying information about this instance (see Figure F-4 on page 258). Its
name, which is built based on a random key appended to the name of its factory,
is displayed in the top text field located right below the main controls. The
remaining inspecting controls present further information about the service.
 Appendix F. Service Browser 257

Figure F-4 Dynamic controls in the Service Browser

As you can see in Figure F-4, the multiple controls shown in the dynamically
generated form refer to the standard operations exported by every port type.
They might be used to set the termination time of the instance, to destroy the
instance and to perform few other low-level operations, depending on how the
port type was declared. Additionally, this form contains controls that refer to the
specific operations declared in the service’s port type. These controls might be
used to test a particular implementation of the port type and check that the
behavior of the service is correct.

As explained previously, if one of the two other tabs is selected, then you will be
presented with information about the WSDL and the service data of this instance,
respectively. In the case of the Service Data tab, it will be possible to visualize all
the standard (common) Service Data Elements that are part of every port type.
258 Grid Services Programming and Application Enablement

The SDEs can be inspected for details about the data they store, namespace,
etc.

The creation and destruction of service instances along with the inspection of
general information about a service factory or a service instance are considered
basic Service Browser operations. In the next section, we will discuss some of
the advanced operations that might be performed with this tool.

Advanced operations
The advanced operations that can be performed by the Service Browser are the
following.

Security monitoring and testing
When a service is selected for inspection, the contents of the frame labeled
Message Security is updated with the security information of the service. These
controls might be used to set the proper attributes needed by security enabled
services during authorization and authentication.

For enabling security in a service, a set of specific configuration steps should be
taken such as the issuing of certificates and the proper configuration of the
service deployment descriptor file. Depending of the level of security required,
the configuration steps might be lengthy and error-prone, making it difficult to test
and debug the service package along with the client code. This section of the
Service Browser allows for the test of these basic configuration requirements
prior to the development of any client.

Service query
The section of controls right below the Message Security frame is the one
through which services might be searched for by means of their service data.
This search process is fairly similar to the one employed by the Index Service
and can be described generally as a search on service data attributes.

For a search to be performed, you should enter the attributes to be queried in the
provided text fields. If the namespace and name of a service are provided, then
the Service Browser will look for an exact match for these names. An alternative
way to perform a search is to provide an XPath expression; in this case, the
search result will be all the services whose name and/or namespace match the
specified pattern.
 Appendix F. Service Browser 259

260 Grid Services Programming and Application Enablement

Appendix G. WSRF

This appendix provides an overview of the WS-Resource framework, known as
WSRF, an open framework for modeling and accessing stateful resources using
Web services. WSRF defines how Web service standards are evolving to meet
grid services.

G

© Copyright IBM Corp. 2004. All rights reserved. 261

Introduction
Since Globus Toolkit V3.0 was released in July 2003, the GGF and the Globus
Alliance have been working closely to define enhancements to the standards.

In January 2004, the WS-Resource Framework (WSRF) was presented, an open
framework for modeling and accessing stateful resources using Web services.
WSRF defines how Web service standards are evolving to meet grid services
elements and requirements, as illustrated in Figure G-1. The specification is
broken up into separate specifications, each focusing on a specific area. The
document From Open Grid Services Infrastructure to WS-Resource Framework:
Refactoring & Evolution Version 1.0, from 2/12/2004 (http://www.globus.org/)
introduces the following normative WSRF specifications:

� WS-ResourceProperties: specifies stateful Web services

� WS-ResourceLifetime: specifies Web service life cycle

� WS-RenewableReferences: specifies Web service endpoint reference and
addressing

� WS-ServiceGroup: specifies the creation and use of groups of Web services

� WS-BaseFault: specifies fault type used for fault error reporting

� WS-Notification: specifies the notification framework

Figure G-1 Grid and Web service convergence

For more information about OGSA-WG (GGF Workgroup of OGSA) and WSRF,
please refer to the following Web sites:

� http://www.globus.org/
� http://www.ggf.org/
� http://forge.gridforum.org/
� http://www.oasis-open.org/
� http://www.globusworld.org/
� http://www.ibm.com/developerworks/library/ws-resource/

grid services
requirements

WSRFweb services
specifications
262 Grid Services Programming and Application Enablement

http://www.globus.org/
http://www.globus.org/
http://www.ggf.org/
http://forge.gridforum.org/
http://www.oasis-open.org/
http://www.globusworld.org/
http://www.ibm.com/developerworks/library/ws-resource/

WS-Resource Framework
The WS-Resource Framework is a set of six Web Services specifications that
define terms such as the WS-Resource approach to modeling and managing
state in a Web services context. Three drafts of specifications have been
released at present, as well as an architecture document that describes the
WS-Resource approach to modeling stateful resources with Web services. There
are also plans for other related documents, one of them comparing the
WS-Resource Framework with the Open Grid Services Infrastructure.

WSRF is the the natural convengence of the grid services, as defined in OGSA,
and the Web services framework.

In the following sections, we present basic specifications for WSRF. Specification
authors plan to submit them to an appropiate standards body in the near future.
These drafts have already been made available to the GGF OGSI working group
for comments.

WS-ResourceLifetime
This defines the mechanisms for WS-Resource destruction, including message
exchanges that allow a requestor to destroy a resource, either immediately or by
using a time-based scheduled resource termination mechanism.

WS-ResourceProperties
Defines how the type of definition of a WS-Resource can be associated with the
interface description of a Web service, and message exchanges for retrieving,
changing, and deleting WS-Resource properties. This relationship is the implied
resource pattern.

WS-Notification
Defines mechanisms for event subscription and notification using a topic-based
publish/subscribe pattern.

WS-RenewableReferences
Defines a conventional decoration of a WS-Addressing endpoint reference with
policy information needed to retrieve an updated version of an endpoint
reference when it becomes invalid.

WS-ServiceGroup
Defines an interface to heterogeneous by-reference collections of Web services.
ServicesGroup can be used to form a wide variety of collections of services or
resources, including registries of services and associated resources.
 Appendix G. WSRF 263

WS-BaseFault
Defines an XML Schema type for base faults, along with rules for how this base
fault type is used and extended by Web services; this simplifies problem
determination by standardizing a base set of information that would appear in
fault messages.

WS-Resource Framework: some definitions
In the following sections, some definitions are included regarding WSRF. This
definitions are extracted from documents still work in progress. Please refer to
the pointers at the end of this appendix for further updates.

Web service
The term Web services emerged in the year 2000 with the introduction of
technologies such as SOAP (Simple Object Access Protocol), WSDL (Web
Services Description Language) and UDDI (Universal Description Discovery and
Integration). Later, the term SOA (Service Oriented Architecture) was coined to
describe the overall approach of building loosely coupled distributed systems
with minimal shared understanding among system components.

Web services are basically Web-based applications, but they are different in the
sense that they are designed to support application to application
communication.

A Web service is a component deployed within some runtime environment which
is responsible for executing the code of the Web service and for dispatching
messages to the Web service. IBM’s WebSphere and JBoss are two examples of
runtime environments.

A Web service, as defined in the WSRF, is stateless, meaning that it is a service
whose implementation maintains no dynamic data, but which acts upon stateful
resources (documents) based on messages it sends and receives. When a Web
service is stateless, it will not maintain a dynamic state, meaning a state for
which the service is responsible between message exchanges with its
requestors. This also brings some advantages; a stateless Web service can be
restarted following failure without concern for its history or prior interactions, and
more copies can be created or destroyed in response to the changing load.

A Web service should be designed while keeping in mind the Web service
interface. This Web service interface is described by using WSDL, and defines
the Web service capabilities in terms of a collection of operations that may be

Definition: A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
264 Grid Services Programming and Application Enablement

invoked by other entities, known as service requestors. Any other Web service
can be at some point in time a service requestor.

WS-Resource
If Web services are supposed to be stateless, or considered as a stateless
message processor, message exchanges are, in many cases, supposed to
enable access/update to state maintained by other system components; those
file systems, databases or other entities, can also be considered to be stateful
resources. The link between one or more stateful resource and a Web service is
the Implied Resource Pattern. The Implied Resource Pattern is a set of
conventions on Web services technologies, in particular XML, WSDL and
WS-Addressing, implicitly meaning that the requestor does not provide the
identity if the resource has an explicit parameter in the body of the request
message. The context used to designate the implied stateful resource is
encapsulated in the WS-Addressing endpoint reference used to address the
target Web service at its endpoint. The term pattern indicates that the
relationship between Web services and stateful resources is codified by a set of
conventions on existing Web services technologies, XML, WSDL, and
WS-Addressing. Please note that when the Web service itself is stateless and
participating with these other two elements, the result can be a stateful operation.

WS-Resource is the result of the participation of a stateful resource in the implied
resource pattern.
 Appendix G. WSRF 265

266 Grid Services Programming and Application Enablement

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 270. Note that some of the documents referenced here may be available
in softcopy only.

� Fundamentals of Grid Computing, REDP-3613-00

� Introduction to Grid Computing with Globus, SG24-6895-01

� Enabling Applications for Grid Computing with Globus, SG24-6936-00

� Globus Toolkit 3.0 Quick Start, REDP-3697-00

� Using a callback mechanism with Globus, TIPS0190

� How to Organize a Localization Pack, TIPS0130

� Linux Handbook - A Guide to IBM Linux Solutions and Resources,
SG24-7000-00

� e-business On Demand Operating Environment, REDP-3673-00

Other publications
These publications are also relevant as further information sources:

� Foster, et al, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, ISBN 1558604758

� The Anatomy of the Grid: Enabling Scalable Virtual Organizations, at:

http://www.globus.org/research/papers/anatomy.pdf

� Web Services Conceptual Architecture, 2001, by Heather Kreger - IBM
Software Group

� Globus Java Programmer’s Guide Core Framework, at:

http://www-unix.globus.org/toolkit/3.0/ogsa/docs/java_programmers_guide.html

� Grid Service Development Tools Guide, at:

http://www-unix.globus.org/toolkit/3.0/ogsa/docs/tools_guide.html
© Copyright IBM Corp. 2004. All rights reserved. 267

http://www.globus.org/research/papers/anatomy.pdf
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/java_programmers_guide.html
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/tools_guide.html

� The Globus Toolkit 3 Programmer's Tutorial, found at:

http://www.casa-sotomayor.net/gt3-tutorial/

� Design an application for grid, November 2003, IBM developerWorks > Grid
Computing

� How to build a Grid Service using GT3, at:

http://www-unix.mcs.anl.gov/~bacon/tutorial/

� WS-Resource Framework Documents, at:

http://www.globus.org/wsrf/#relevant

Online resources
These Web sites and URLs are also relevant as further information sources:

Include references to Use Cases (description, tools)

� Globus Alliance

http://www.globus.org

� Global Grid Forum (GGF)

http://www.ggf.org/

� GridForge - working respository for GGF Working and Research Groups

http://forge.gridforum.org/

� OASIS Technical Committee

http://www.oasis-open.org/

� GlobusWORLD

http://www.globusworld.org/

� Grid developerWorks Web site

http://www.ibm.com/developerworks/grid

� OGSI Version 1.0 (Draft)

http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-29_2003-
04-05.pdf

� Grid Service Specification (Draft 3)

http://www.globus.org/research/papers/gsspec.pdf

� Apache Software Foundation

http://www.apache.org
268 Grid Services Programming and Application Enablement

http://www.casa-sotomayor.net/gt3-tutorial/
http://www-unix.mcs.anl.gov/~bacon/tutorial/
http://www.globus.org/wsrf/#relevant
http://www.globus.org
http://www.ggf.org/
http://forge.gridforum.org/
http://www.oasis-open.org/
http://www.globusworld.org/
http://www.ibm.com/developerworks/grid
http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-29_2003-04-05.pdf
http://www.globus.org/research/papers/gsspec.pdf
http://www.apache.org

� Apache Ant Project

http://ant.apache.org

� Apache Axis Project

http://ws.apache.org/axis/

� Apache Jakarta Project

http://jakarta.apache.org

� Apache Software license

http://www.opensource.org/licenses/apachepl.php

� Condor

http://www.cs.wisc.edu/condor/

� World Wide Web Consortium (W3C)

http://www.w3.org/

� SOAP 1.1 specification

http://www.w3.org/TR/SOAP/

� WSDL 1.1 specification

http://www.w3.org/TR/wsdl

� Web Service Description Language (WSDL)

http://www.w3.org/

� Open source Initiative license information

http://opensource.org/docs/certification_mark.php

� Lesser General Public License

http://www.opensource.org/licenses/lgpl-license.php

� GNU Public License

http://www.gnu.org/copyleft/gpl.html

� IBM LoadLeveler®

http://www.ibm.com/servers/eserver/pseries/library/sp_books/loadleveler.html

� IBM Public License

http://www.opensource.org/licenses/ibmpl.php

� IBM eServer Information Center

http://publib.boulder.ibm.com/eserver/v1r1/en_US/index.html?info/ogsainfo/k
ickoff.html

� Grid Computing Environment (GCE)

http://www.globus.org/research/development-environments.html
 Related publications 269

http://ant.apache.org
http://ws.apache.org/axis/
http://jakarta.apache.org
http://www.opensource.org/licenses/apachepl.php
http://www.cs.wisc.edu/condor/
http://www.w3.org/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.w3.org/
http://opensource.org/docs/certification_mark.php
http://www.opensource.org/licenses/lgpl-license.php
http://www.gnu.org/copyleft/gpl.html
http://www.ibm.com/servers/eserver/pseries/library/sp_books/loadleveler.html
http://www.opensource.org/licenses/ibmpl.php
http://publib.boulder.ibm.com/eserver/v1r1/en_US/index.html?info/ogsainfo/kickoff.htm
http://www.globus.org/research/development-environments.html

� IBM Grid Toolbox

http://www.alphaworks.ibm.com/tech/gridtoolbox

� Grid Application Framework for Java

http://www.alphaworks.ibm.com/tech/GAF4J

� Globus Java Programmer’s Guide Core Framework at:

http://www-unix.globus.org/toolkit/3.0/ogsa/docs/java_programmers_guide.html

� Grid Service Development Tools Guide at:

http://www-unix.globus.org/toolkit/3.0/ogsa/docs/tools_guide.html

� The Globus Toolkit 3.0 Programmer's Tutorial

http://www.casa-sotomayor.net/gt3-tutorial/

� Platform JobScheduler 5

http://www.platform.com/

� Portable Batch System (PBS)

http://pbs.mrj.com/

� OpenPegasus

http://www.openpegasus.org/

� Distributed Management Task Force (DMTF)

http://www.dmtf.org/about

� Standards Based Linux Instrumentation for Manageability (SBLIM)

http://www.ibm.com/sblim

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
270 Grid Services Programming and Application Enablement

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.alphaworks.ibm.com/tech/gridtoolbox
http://www.alphaworks.ibm.com/tech/GAF4J
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/java_programmers_guide.html
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/tools_guide.html
http://www.casa-sotomayor.net/gt3-tutorial/
http://www.platform.com/
http://pbs.mrj.com/
http://www.openpegasus.org/
http://www.dmtf.org/about
http://www.ibm.com/sblim

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
 Related publications 271

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

272 Grid Services Programming and Application Enablement

Index

A
ant 215

deploy 46
undeploy 46

Apache Axis 40, 215
Apache Xerces 40
Apache-XML-Security 40
Application

architecture 73
design 73
development 73

Application flow
Networked flow 99
Parallel flow 97
Serial flow 98

Autonomic management 178

B
Bind operation 7
Bindings

Encoding style 14
Name and type 14
Style 14
Transport 14

BulletinAppMesgOprImpl class 159
BulletinOprImpl class 140
BulletinPenMesgOprImpl class 156

C
callback notification message 69
Case study

Administration client 132
Administrator 119
Architecture 122
Bulletin service definition 127, 138
Client side code 202
core News Service 126
Design 116
Editor 121
editor 154
editor client 164
Functional requirements 116
© Copyright IBM Corp. 2004. All rights reserved.
Grid Application Enablement 115
grid service coding 125
grid service specifying 125
IBM Grid Toolbox 183
News Service 121, 172
News Service Application 116
Non-functional requirements 122
operationalizing the News Service 137
Problem statement 116
server side 156
server side code 192
server side functionality 127, 138
source code 191
Subscriber 121
Subscriber client 135, 150
System context 117
Use case model 119
workflow 154
Writer 120
Writer client 147, 163

CLASSPATH 43, 45, 47, 51
Coding

Development of WSDL 43
stubs 43

D
DecorateWSDL

see GWSDL
Delegation 244
Detailed design

Application flow 96
Application flow vs. job flow 97
Checkpoint and restart capability 106
Data consumer 96
Data criteria 108
Data producer 96
Develop 96
Informative and predictable aspects 110
Installation 110
Job 96
Job criteria 101
Job dependencies 104
Job topology 106
 273

Jobs and sub-jobs 101
Loose coupling 100
Networked flow 97, 99
Parallel flow 97
Parallelization 99
Passing of data input/output 107
Programming language considerations 103
Resilience and reliability 111
Serial flow 97–98
Transactions 108
Unobtrusive criteria 110
Usability criteria 109

Development
Building 41–42
Coding 42
Deploying 41–42
from scratch 74
grid application 74
Java interface 41
machine 38
Major Steps 42
method 41
methodology 38
Packaging 42
procedures 38
Specifying 42
Testing 42
tools 38, 41

development 37

E
Eclipse 41
enabling existing code 74
Error handling 80
Existing code

encapsulated 75
large 75
multiple connections 75
written in Java 75

eXtensible Markup Language
see XML

F
Factory 28, 60

GSH 60
GSR 60
interface 26

Factory port type 31

factoryLocator 64
Features

Factory 60
Life cycle 64
Notifications 67
SDE 61

findServiceDataExtensibility 64
Functional requirements 77

G
GAR 45
getMOTD 11, 18
getMOTDRequest 11
getMOTDResponse 11
GGF 3, 29, 262
GGF Workgroup of OGSA

see OGSA-WS
GGF-OGSA-WG 22
Global Grid Forum

see GGF
Globus 178
Globus Alliance 3, 22
Globus Toolkit 3.0

see GT3
globus-start-container 57
Grid Administrator 178
grid application 74

bandwidth on the network 76
criteria 75
inter-process communication 76
job scheduling 76
qualification 76
requirements 76

Grid Archive
see GAR

grid client 48
Grid Computing 2
grid computing 178
Grid Developer 178
Grid services 28, 41–42, 44, 49, 60, 178–179,
261–262

instance 26
transient 61

grid technology 22
grid wrapper 74
grid-enabled application 73
GridService port type 29, 35
GridServiceCallback 66
274 Grid Services Programming and Application Enablement

gridServiceHandle 64
GridServiceImpl class 244
gridServiceReference 64
GSDL2Java 42, 44, 53
GSH 26, 29, 32, 60, 63
GSM 178
GSR 26, 29, 32, 60
GT3 23, 38, 44, 46, 59

container 44
GWSDL 43–45, 64

H
HandleMap 27–28
HandleResolver port type, 32
High level design

Bottom-up approach 93
Define interfaces 93
Define method parameters and return types 93
Define service data and notification strategy 93
Develop 92
life cycle 94
Notification 94
Run the scenarios 95
security 95
Service data 93
Top-down approach 93

HTTP 8, 14
Hypertext Transfer Protocol

see HTTP

I
IBM Grid Toolbox 3, 23, 177

Case study 183
Coding and building 180
Deployment 181
Grid Application Enablement 115
Testing 181
Tooling 180

IBM Grid Toolbox V3 for Multiplatforms V1.1
see IBM Grid Toolbox

IDE 41
Implementation

Write the clients 113
Write the implementation 112
Write the interface 112
Write the non-Java parts 112

Integrated Development Environments
see IDE

Interface factors 79
interfaces 64

J
J2SE 39–40
JAAS 39–40
Jakarta 39–40
JAR 41–42
JAR file 46–47
Java 44

classes 45
code 43
data types 44
grid service 44
inheritance approach 45
interface 43–44
programming 44
stubs 43–44

Java 2 39
Java 2 Standard Edition

see J2SE
Java Archives

see JAR
Java CoG Kit 40
Java interface 41
Java Runtime Environment

see JRE
Java2WSDL 42–43, 232
Javac 42
JBuilder 41
JDBC

compliant database 40
driver 40

JMS 8
Job criteria

Batch job 101
Interactive jobs 103
Parallel applications 103

JRE 40
Junit 39

L
Life cycle management 64
Lifecycle 64, 94

Callbacks methods 65
deactivate 65
deployment descriptor 66
Management 64
 Index 275

monitor 65
parameters 66
postCreate 65
preCreate 65
predestroy 65
ServiceLifecycleMonitor 65

M
Machine

Client 40
Development 38
Server 39

MainSrvImpl class 145, 161
MEP 11

Notification 11
One-way 11
Request-response 11
Solicit-response 11

message 32
Message Exchange Patterns

see MEP
MOTD 15
MOTD1Service 15
MOTDSoapBinding 15

N
Non-functional requirements 78

Application flexibility 81
Error handling 80
External connections 83
File formats 88
Mixed platform environments 87
Performance 83
Reliability 85
Scalability 79
Security 81
Server and client platform 82
Software license considerations 88
System management 85
Topology considerations 86
User interface factors 79

Notification message 69
Notification Sink 33, 67, 69
Notification source 67, 69
notification subscription 67
Notifications 28, 67, 94

callback notification message 69
flow 67–68

grid service 67
lifetime 67
Notification message 69
Notification sink 69
Notification source 69
post service data value 69
pull notification 70
push 70
sink 67–68
source 67–68
subscription 67–68
Subscription expression 68
subscription lifetime 68
Subscription manager 69
Subscription request 68

NotificationSink port type 34
NotificationSource port type 32
NotificationSubscription port type 33

O
OGSA 21–23, 28

concepts 22
OGSA-WG 23, 262
OGSI 23, 28–29, 59

interfaces 29
operations 29
PortType 29
WSDL extension 28

on demand solutions 178
Open Grid Services Architecture

see OGSA
Open Grid Services Infrastructure

see OGSI
Operation

Add 35
DeleteByServiceDataNames 31
Destroy 31
FindServiceData 30
QueryByServiceDataNames 30
Remove 35
RequestTerminationAfter 31
RequestTerminationBefore 31
SetServiceData 30
SetServiceDataByNames 30
Subscribe 33
SubscribeByServiceDataNames 33

OperationProvider 45, 244
276 Grid Services Programming and Application Enablement

P
persistent service 60
PortType 12, 29

Factory 31
GridService 29
HandleResolver 32
NotificationSink 33
NotificationSource 32
NotificationSubscription 33
ServiceGroup 34
ServiceGroupEntry 35
ServiceGroupRegistration 35

Postgres 40
Programming language 103
Publish 7
pull notification 70
push notification 70

Q
QoS 22
Quality of Service

see QoS

R
Redbooks Web site 270

Contact us xviii
Registry Interface 28
Reliable File Transfer

see RFT
Remote Procedure Call

see RPC
Replica Location Service

see RLS
Requirements

functional 77
grid applications 76
non-functional 78

RFT 40
RPC 14

S
Sample

Building 52
client code 52, 56
Coding 50
Deploying 53
deployment descriptor 54

grid client 48
grid services 49, 51
Packaging 53
service 52
Testing 55
undeployment descriptor 54

Scalability 79
SDE 61, 93

addExtensibility 35
Content 36
dynamic 62
Entry 34
factoryLocator 29, 64
FindServiceDataExtensibility 30
findServiceDataExtensibility 30, 64
grid service interface 64
gridServiceHandle 29, 64
gridServiceReference 29, 64
GWSDL 64
interfaces 29, 64
MemberServiceLocator 35
MembershipContentRule 34
NotifiableServiceDataName 32
removeExtensibility 35
serviceDataName 29, 64
setServiceDataExtensibility 30, 64
SinkLocator 33
static 62
SubscribeExtensibility 32
SubscriptionExpression 33
termination time 30, 64
types 62
XML schema 64

SDK 40, 180
Security 81

Data encryption 81
Logging and Alerting 81
User Authentication 81
User Authorization 81

server-deploy.wsdd file 45, 53
server-undeploy.wsdd file 53
Service Bindings 9
Service Browser 42, 47, 253

Advanced operations 259
Basic operations 254

Service Data Elements
see SDE

Service Implementation 9
Port 15
 Index 277

Service 15
Service implementation 44
Service Interface 9

Messages 10
Operation 11
Port type 12
Types 9

Service Oriented Architecture
see SOA

Service Provider 6
Service Registry 6
Service Requestor 6
serviceDataNames 64
ServiceGroup port type 34–35
ServiceLifecycleMonitor 65
services 6, 16

instances 60
setServiceDataExtensibility 64
Simple Object Access Protocol

see SOAP
sink 32
SOA 5–6

Bind 8
components 6
concept 6
Find 8
implementation 8
operations 7
Publish 7
Service Provider 6
Service Registry 7
Service Requestor 6
Web service 8

SOAP 5, 8, 14, 16, 22, 44
elements 17
envelope 17
interoperability 17
message 17
runtime environment 18
server 18

SOAP elements
Encodings 18
Input parameter 18
Method name 18
Namespaces 17
Output result 19
Uniform Resource Name 18

Software Development Kit
see SDK

source 32
standards 3
Subscription expression 32, 68
subscription lifetime 67
Subscription manager 69
Subscription request 68

T
termination time 60, 64
Tomcat 39–40, 214
Tools

ant deploy 46
ant undeploy 46
DecorateWDSL 42
globus-start-container 57
GSDL2Java 42, 44, 53
Java2WSDL 42, 232
Javac 42
Service Browser 42, 254
WSDL2Java 44, 234

Topology
Data 86
Network 86

transport protocol 16

U
UDDI 8–9, 19, 22
UDP 28
Uniform Resource Identifier

see URI
Uniform Resource Locator

see URL
Universal Description, Discovery and Integration

see UDDI
URI 12
URL 27, 63
User Datagram Protocol

see UDP

V
virtual computing 22

W
W3C 9
Web service 8, 18, 38, 46, 213, 261–262, 264

Building 220
Coding 216
278 Grid Services Programming and Application Enablement

Deploy and test 226
web service

Specifying 216
Web Services Description Language

see WSDL
Web Services Resource Framework

see WSRF
WebSphere Studio Application Developer

see WSAD
World Wide Web Consortium

see W3C
WSAD 41
WS-BaseFault 262, 264
WS-Coordination 9
WSDD file 42, 44–46
WSDL 9, 14, 19, 22, 27, 42–43

Bindings 12
operation 27
Service Implementation 15
Service Interface 9

WSDL2Java 44, 234
WS-Notification 262–263
WS-Reliable Messaging 8
WS-RenewableReferences 262–263
WS-Resource Framework 261, 264–265

see WSRF
WS-ResourceLifetime 262–263
WS-ResourceProperties 262–263
WSRF 3, 29, 261–263
WS-Security 8
WS-ServiceGroup 262–263
WS-Transaction 9

X
XML 9, 14, 22, 27, 68
 Index 279

280 Grid Services Programming and Application Enablement

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Grid Services Program
m

ing and Application Enablem
ent

®

SG24-6100-00 ISBN 0738498033

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Grid Services
Programming and
Application Enablement

Grid services
programming

Samples using
Globus Toolkit V3.0

Implementation
based on OGSI V1.0

The goal of this IBM Redbook is to familiarize the user with the
concepts of the OGSA (Open Grid Services Architecture), OGSI
(Open Grid Services Infrastructure), Globus Toolkit V3.0,
presenting concrete programmatic examples, and also
introducing the enhanced features of the IBM Grid Toolbox.

We illustrate the various steps needed to develop a grid
service application. Existing applications can be wrappered
and made available as grid services or applications can be
developed from scratch to take advantage of the grid service
concepts and provide the benefits made possible by that grid
service.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Why grid computing?
	1.2 Benefits of grid computing
	1.3 Use of standards

	Chapter 2. Service Oriented Architecture
	2.1 What is SOA?
	2.2 The basic components of SOA
	2.3 Web services as an implementation of the SOA
	2.3.1 Web Service Description Language (WSDL)
	2.3.2 Simple Object Access Protocol (SOAP)
	2.3.3 Universal Description, Discovery, and Integration (UDDI)

	Chapter 3. Open Grid Services Architecture
	3.1 Introduction
	3.2 OGSA mechanisms
	3.2.1 Interoperability
	3.2.2 Discovery and access of resources
	3.2.3 Independent upgradability
	3.2.4 Transient life cycle management of resources
	3.2.5 Services state - grid service handle and reference
	3.2.6 Factory
	3.2.7 Dynamic resolution of transient references from permanent handles
	3.2.8 Service data element and registry interface
	3.2.9 Asynchronous notification of state changes

	3.3 Open Grid Services Infrastructure (OGSI)
	3.3.1 OGSI interfaces and their operations

	Chapter 4. Grid services development
	4.1 Introduction
	4.1.1 Development machine
	4.1.2 Server machine
	4.1.3 Client machine

	4.2 Grid development basic method
	4.2.1 Specifying
	4.2.2 Coding
	4.2.3 Building
	4.2.4 Packaging
	4.2.5 Deploying and undeploying
	4.2.6 Testing

	4.3 Grid services development sample
	4.3.1 Essentials
	4.3.2 Specifying: defining the service’s functionality
	4.3.3 Coding sample
	4.3.4 Building the sample: service implementation
	4.3.5 Packaging the sample
	4.3.6 Deploying the sample
	4.3.7 Testing sample

	Chapter 5. Major features of grid services
	5.1 Introduction
	5.2 Factory
	5.3 Service Data Elements
	5.4 Life cycle
	5.5 Notifications

	Chapter 6. Project and design of grid applications
	6.1 Use existing code or build from scratch?
	6.1.1 Developing a grid application from scratch
	6.1.2 Grid enabling existing code

	6.2 Qualify the application
	6.3 Understand the requirements
	6.3.1 Functional requirements
	6.3.2 Non-functional requirements

	6.4 Develop a high-level design
	6.4.1 Define interfaces
	6.4.2 Define method parameters and return types
	6.4.3 Define service data and notification strategy
	6.4.4 Define the life cycle
	6.4.5 Define security
	6.4.6 Run the scenarios to ensure that the requirements are satisfied

	6.5 Develop a detailed design
	6.5.1 Application flow in a grid
	6.5.2 Job criteria
	6.5.3 Programming language considerations
	6.5.4 Job dependencies on the system environment
	6.5.5 Checkpoint and restart capability
	6.5.6 Job topology
	6.5.7 Passing of data input/output
	6.5.8 Transactions
	6.5.9 Data criteria
	6.5.10 Usability criteria
	6.5.11 Installation
	6.5.12 Unobtrusive criteria
	6.5.13 Informative and predictable aspects
	6.5.14 Resilience and reliability

	6.6 Implement the design
	6.6.1 Write the interface
	6.6.2 Write the implementation
	6.6.3 Write the non-Java parts
	6.6.4 Write the clients

	Chapter 7. Case study: grid application enablement
	7.1 Introduction
	7.2 Case study: design
	7.2.1 Functional requirements
	7.2.2 Non-functional requirements
	7.2.3 Architecture overview

	7.3 Case study: grid service specifying and coding
	7.4 Phase I: building the core News Service
	7.4.1 Development of server-side functionality
	7.4.2 Administration client implementation
	7.4.3 Subscriber client implementation

	7.5 Phase II: operationalizing the News Service with news writer and subscriber notification of news
	7.5.1 Enhancing server-side functionality
	7.5.2 Writer client implementation
	7.5.3 Enhancing the subscriber client implementation

	7.6 Phase III: incorporating workflow and approval by editor
	7.6.1 Enhancing the server side functionality
	7.6.2 Modifying the writer client
	7.6.3 Implementing the editor client

	7.7 Phase IV: making the News Service robust

	Chapter 8. IBM Grid Toolbox basics
	8.1 Introduction
	8.1.1 Goals
	8.1.2 Services

	8.2 Tooling
	8.2.1 Coding and building
	8.2.2 Deployment
	8.2.3 Testing

	8.3 Case study
	8.3.1 Case study - phase I
	8.3.2 Case study - phase II
	8.3.3 Case study - phase III
	8.3.4 Case study - phase IV

	Appendix A. Sample code
	Server-side code
	Client-side code

	Appendix B. Web service development
	Introduction
	Development tools
	Web services development basic steps illustrated

	Specifying
	Coding
	Generating WSDL from a Java interface

	Building
	Generating Java code from a WSDL file
	Implementing the server side code
	Implementing the client side code

	Deploying and testing the Web service

	Appendix C. Java2WSDL and WSDL2Java
	Java2WSDL
	WSDL2Java

	Appendix D. Tasks using ant
	axis-wsdl2java
	axis-java2wsdl
	axis-admin

	Appendix E. Delegation
	Delegation and operational providers

	Appendix F. Service Browser
	Introduction
	Basic operations
	Advanced operations
	Security monitoring and testing
	Service query

	Appendix G. WSRF
	Introduction
	WS-Resource Framework
	WS-Resource Framework: some definitions

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

